Nothing Special   »   [go: up one dir, main page]

Skip to main content

FNR: Arbitrary Length Small Domain Block Cipher Proposal

  • Conference paper
Security, Privacy, and Applied Cryptography Engineering (SPACE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8804))

Abstract

We propose a practical flexible (or arbitrary) length small domain block cipher, FNR encryption scheme. FNR denotes Flexible Naor and Reingold. It can cipher small domain data formats like IPv4, Port numbers, MAC Addresses, Credit card numbers, any random short strings while preserving their input length. In addition to the classic Feistel networks, Naor and Reingold propose usage of Pair-wise independent permutation (PwIP) functions based on Galois Field GF(2n). Instead we propose usage of random N ×N Invertible matrices in GF(2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellare, M., Rogaway, P., Spies, T.: The ffx mode of operation for format-preserving encryption (draft 1.1) Manuscript (standards proposal) submitted to NIST (February 2010)

    Google Scholar 

  2. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryption. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 295–312. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 231–244. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Black, J.A., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Cook, D.L.: Elastic block ciphers. PhD thesis, Columbia University (2006)

    Google Scholar 

  6. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing 17(2), 373–386 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby rackoff revisited. Journal of Cryptology 12(1), 29–66 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Patarin, J.: Improved security bounds for pseudorandom permutations. In: Proceedings of the 4th ACM Conference on Computer and Communications Security, pp. 142–150. ACM (1997)

    Google Scholar 

  9. Patarin, J.: Luby-rackoff: 7 rounds are enough for formula_image security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Patel, S., Ramzan, Z., Sundaram, G.S.: Efficient constructions of variable-input-length block ciphers. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 326–340. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Rogaway, P., Tweet, D.: Format-preserving encryption (2010)

    Google Scholar 

  12. Fluhrer, S., Dara, S.: Reference Implementation of FNR (2014), https://github.com/sashank/libfnr

  13. Spies, T.: Format preserving encryption. Unpublished white paper. Database and Network Journal (December 2008), Format preserving encryption: www.voltage.com

  14. Vaudenay, S.: Decorrelation: a theory for block cipher security. Journal of Cryptology 16(4), 249–286 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dara, S., Fluhrer, S. (2014). FNR: Arbitrary Length Small Domain Block Cipher Proposal. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2014. Lecture Notes in Computer Science, vol 8804. Springer, Cham. https://doi.org/10.1007/978-3-319-12060-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12060-7_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12059-1

  • Online ISBN: 978-3-319-12060-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics