Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simulation Environment for Multi-robot Cooperative 3D Target Perception

  • Conference paper
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8810))

Abstract

Field experiments with a team of heterogeneous robots require human and hardware resources which cannot be implemented in a straightforward manner. Therefore, simulation environments are viewed by the robotic community as a powerful tool that can be used as an intermediate step to evaluate and validate the developments prior to their integration in real robots. This paper evaluates a novel multi-robot heterogeneous cooperative perception framework based on monocular measurements under the MORSE robotic simulation environment. The simulations are performed in an outdoor environment using a team of Micro Aerial Vehicles (MAV) and an Unmanned Ground Vehicle (UGV) performing distributed cooperative perception based on monocular measurements. The goal is to estimate the 3D target position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., Okada, Y., Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S.: Collaborative mapping of an earthquake-damaged building via ground and aerial robots. Journal of Field Robotics 29(5), 832–841 (2012)

    Article  Google Scholar 

  2. Olson, E., Strom, J., Goeddel, R., Morton, R., Ranganathan, P., Richardson, A.: Exploration and mapping with autonomous robot teams. Commun. ACM 56(3), 62–70 (2013)

    Article  Google Scholar 

  3. Kushleyev, A., Kumar, V., Mellinger, D.: Towards a swarm of agile micro quadrotors. In: Proceedings of Robotics: Science and Systems, Sydney, Australia (2012)

    Google Scholar 

  4. Xu, Z., Douillard, B., Morton, P., Vlaskine, V.: Towards Collaborative Multi-MAV-UGV Teams for Target Tracking. In: 2012 Robotics: Science and Systems Workshop on Integration of Perception with Control and Navigation for Resource-limited, Highly Dynamic, Autonomous Systems (2012)

    Google Scholar 

  5. Marino, A., Caccavale, F., Parker, L.E., Antonelli, G.: Fuzzy behavioral control for multi-robot border patrol. In: 17th Mediterranean Conference on Control and Automation, MED 2009, pp. 246–251 (2009)

    Google Scholar 

  6. Lächele, J., Franchi, A., Bülthoff, H.H., Robuffo Giordano, P.: SwarmSimX: Real-time simulation environment for multi-robot systems. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 375–387. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Folgado, E., Rincón, M., Álvarez, J.R., Mira, J.: A multi-robot surveillance system simulated in gazebo. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 202–211. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Echeverria, G., Lassabe, N., Degroote, A., Lemaignan, S.: Modular open robots simulation engine: Morse. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 46–51 (May 2011)

    Google Scholar 

  9. Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P., Lesire, C., Stinckwich, S.: Simulating complex robotic scenarios with MORSE. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 197–208. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Comprehensive simulation of quadrotor uAVs using ROS and gazebo. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 400–411. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Dewan, A., Mahendran, A., Soni, N., Krishna, K.: Heterogeneous ugv-mav exploration using integer programming. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5742–5749 (November 2013)

    Google Scholar 

  12. Michael, N., Kumar, V.: Controlling shapes of ensembles of robots of finite size with nonholonomic constraints. In: Robotics: Science and Systems (2008)

    Google Scholar 

  13. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2149–2154 (September 2004)

    Google Scholar 

  14. Metta, G., Fitzpatrick, P., Natale, L.: Yarp: Yet another robot platform. International Journal on Advanced Robotics Systems (2006)

    Google Scholar 

  15. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  16. Benjamin, M., Schmidt, H., Newman, P., Leonard, J.: Nested autonomy for unmanned marine vehicles with moos-ivp. J. Field Robotics, 834–875 (2010)

    Google Scholar 

  17. Martins, A., Amaral, G., Dias, A., Almeida, C., Almeida, J., Silva, E.: Tigre - an autonomous ground robot for outdoor exploration. In: 13th International Conference on Autonomous Robot Systems and Competitions (2013)

    Google Scholar 

  18. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice Hall PTR, Upper Saddle River (1998)

    Google Scholar 

  19. Dias, A., Almeida, J., Silva, E., Lima, P.: Multi-robot cooperative stereo for outdoor scenarios. In: 2013 13th International Conference on Autonomous Robot Systems (Robotica), pp. 1–6 (April 2013)

    Google Scholar 

  20. Dias, A., Almeida, J., Lima, P., Silva, E.: Uncertainty based Multi-Robot Cooperative Triangulation. In: RoboCup Symposium Proceedings, Brasil. LNCS (LNAI). Springer (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dias, A., Almeida, J., Dias, N., Lima, P., Silva, E. (2014). Simulation Environment for Multi-robot Cooperative 3D Target Perception. In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2014. Lecture Notes in Computer Science(), vol 8810. Springer, Cham. https://doi.org/10.1007/978-3-319-11900-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11900-7_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11899-4

  • Online ISBN: 978-3-319-11900-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics