Abstract
Multiplex networks contain multiple simplex networks. Community detection of multiplex networks needs to deal with information from all the simplex networks. Most approaches aggregate all the links in different simplex networks treating them as being equivalent. However, such aggregation might ignore information of importance in simplex networks. In addition, for each simplex network, the aggregation only considers adjacency relation among nodes, which can’t reflect real closeness among nodes very well. In order to solve the problems above, this paper presents a unified model to detect community structure by grouping the nodes based on a unified matrix transferred from multiplex network. In particular, we define importance and node similarity to describe respectively correlation difference of simplex networks and closeness among nodes in each simplex network. The experiment results show the higher accuracy of our model for community detection compared with competing methods on synthetic datasets and real world datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social Networks 25(3), 211–230 (2003)
Aldecoa, R., Marín, I.: Deciphering network community structure by surprise. PloS One 6(9), e24195 (2011)
Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Physical Review E 89(3), 032804 (2014)
Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: Multidimensional networks: foundations of structural analysis. World Wide Web 16(5-6), 567–593 (2013)
Berlingerio, M., Pinelli, F., Calabrese, F.: Abacus: frequent pattern mining-based community discovery in multidimensional networks. Data Mining and Knowledge Discovery 27(3), 294–320 (2013)
Bródka, P., Kazienko, P., Musiał, K., Skibicki, K.: Analysis of neighbourhoods in multi-layered dynamic social networks. International Journal of Computational Intelligence Systems 5(3), 582–596 (2012)
Brummitt, C.D., Lee, K.M., Goh, K.I.: Multiplexity-facilitated cascades in networks. Physical Review E 85(4), 045102 (2012)
Cai, D., Shao, Z., He, X., Yan, X., Han, J.: Community mining from multi-relational networks. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 445–452. Springer, Heidelberg (2005)
Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Communities unfolding in multislice networks. In: da F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds.) CompleNet 2010. CCIS, vol. 116, pp. 187–195. Springer, Heidelberg (2011)
Chowdhury, G.: Introduction to modern information retrieval. Facet Publishing (2010)
De Meo, P., Ferrara, E., Fiumara, G., Provetti, A.: Generalized louvain method for community detection in large networks. In: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 88–93. IEEE (2011)
Fortunato, S.: Community detection in graphs. Physics Reports 486(3), 75–174 (2010)
Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)
Gomez, S., Diaz-Guilera, A., Gomez-Gardeñes, J., Perez-Vicente, C.J., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Physical Review Letters 110(2), 028701 (2013)
Gómez-Gardenes, J., Reinares, I., Arenas, A., Floría, L.M.: Evolution of cooperation in multiplex networks. Scientific Reports 2 (2012)
Greene, D., O’Callaghan, D., Cunningham, P.: Identifying topical twitter communities via user list aggregation. arXiv preprint arXiv:1207.0017 (2012)
Gregory, S.: Finding overlapping communities using disjoint community detection algorithms. In: Fortunato, S., Mangioni, G., Menezes, R., Nicosia, V. (eds.) Complex Networks. SCI, vol. 207, pp. 47–61. Springer, Heidelberg (2009)
Hao, J., Cai, S., He, Q., Liu, Z.: The interaction between multiplex community networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 21(1), 016104 (2011)
Harrer, A., Schmidt, A.: An approach for the blockmodeling in multi-relational networks. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 591–598. IEEE (2012)
Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Physical Review E 80(5), 056117 (2009)
Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th International Conference on World Wide Web, pp. 631–640. ACM (2010)
Magnani, M., Micenkova, B., Rossi, L.: Combinatorial analysis of multiple networks. Tech. rep. (2013)
Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)
Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of. Addison-Wesley (1989)
des Sciences Naturelles, S.V.: Bulletin de la Société vaudoise des sciences naturelles, vol. 7. Impr. F. Blanchard (1864)
Sorenson, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Kongelige Danske Videnskabernes Selskab 5(1-34), 4–7 (1948)
Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research 3, 583–617 (2003)
Symeonidis, P., Tiakas, E., Manolopoulos, Y.: Transitive node similarity for link prediction in social networks with positive and negative links. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 183–190. ACM (2010)
Tang, L., Liu, H.: Uncovering cross-dimension group structures in multi-dimensional networks. In: SDM Workshop on Analysis of Dynamic Networks (2009)
Tang, L., Wang, X., Liu, H.: Community detection in multi-dimensional networks. Tech. rep., DTIC Document (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhu, G., Li, K. (2014). A Unified Model for Community Detection of Multiplex Networks. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2014. WISE 2014. Lecture Notes in Computer Science, vol 8786. Springer, Cham. https://doi.org/10.1007/978-3-319-11749-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-11749-2_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11748-5
Online ISBN: 978-3-319-11749-2
eBook Packages: Computer ScienceComputer Science (R0)