Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluation of CIE-XYZ System for Face Recognition Using Kernel-PCA

  • Conference paper
Signal Processing and Information Technology (SPIT 2012)

Abstract

paper evaluates the performance of face recognition with different CIE color spaces. The XYZ and L*a*b* color spaces are compared with the gray image (luminance information Y). The face recognition system consists of a feature extraction step and a classification step. The Kernel-PCA is used to construct the feature space. Kernel-PCA is a nonlinear form of Principal Component Analysis (PCA). The k-nearest neighbor classifier with cosine measure is used in the classification step. Experiments using FEI color database with 200 subjects, show that the b* color component can improve the recognition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: Color Face Recognition for Degraded Face Images. IEEE Transactions on Systems, Man, and Cybernetics—part B: Cybernetics 39(5), 1217–1230 (2009)

    Article  Google Scholar 

  2. Shih, P., Liu, C.: Comparative Assessment of Content-Based Face Image Retrieval in Different Color Spaces. Int. J. Pattern Recognition and Artificial Intelligence 19(7), 873–893 (2005)

    Article  Google Scholar 

  3. Liu, Z., Liu, C.: Robust Face Recognition Using Color. In: 3rd IAPR/IEEE Int. Conference on Advances in Biometrics, pp. 122–131 (2009)

    Google Scholar 

  4. Pentland, T., Moghadam, B., Starner, T.: View based and modular eigenspaces for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 84–91 (1994)

    Google Scholar 

  5. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. J. Neural Computing 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  6. Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: Color Local Texture Features for Color Face Recognition. IEEE Transactions on Image Processing 21(3), 1366–1380 (2012)

    Article  MathSciNet  Google Scholar 

  7. Wang, C., Yin, B., Bai, X., Sun, Y.: Color Face Recognition Based on 2DPCA. In: 19th International Conference on. J. Pattern Recognition (ICPR 2008), pp. 1–4 (2008)

    Google Scholar 

  8. Wang, S., Yang, J., Zhang, N., Zhou, C.: Tensor Discriminant Color Space for Face Recognition. IEEE Transactions on Image Processing (2011), doi: 10.1109/TIP.2011.2121084

    Google Scholar 

  9. Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: A comparative study of preprocessing mismatch effects in color image based face recognition. J. Pattern Recognition (2010), doi:10.1016/j.patcog.2010.08.020

    Google Scholar 

  10. Weeks, A.R.: Fundamentals of electronic image processing. SPIE Optical Engineering Press. IEEE Press, Washington, USA (1996)

    Google Scholar 

  11. Jarillo, G., Pedrycz, W., Reformat, M.: Aggregation of classifiers based on image transformations in biometric face recognition. J. Machine Vision and Applications 19, 125–140 (2008)

    Article  Google Scholar 

  12. QingShan, L., Rui, H., HanQing, L., SongDe, M.: Kernel-Based Nonlinear Discriminant Analysis for Face Recognition. J. Comput. Sci. & Technol. 18(6), 788–795 (2003)

    Article  MATH  Google Scholar 

  13. Orozco-Alzate, M., Castellanos-Domínguez, C.G.: Comparison of the nearest feature classifiers for face recognition. Machine Vision and Applications Journal 17, 279–285 (2006)

    Article  Google Scholar 

  14. Ebied, H.M.: Feature Extraction using PCA and Kernel-PCA for Face Recognitio. In: 8th International Conference on INFOrmatics and Systems (INFOS 2012), pp. 74–80 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Ebied, H.M. (2014). Evaluation of CIE-XYZ System for Face Recognition Using Kernel-PCA. In: Das, V.V., Elkafrawy, P. (eds) Signal Processing and Information Technology. SPIT 2012. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-11629-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11629-7_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11628-0

  • Online ISBN: 978-3-319-11629-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics