Nothing Special   »   [go: up one dir, main page]

Skip to main content

C2CU : A CUDA C Program Generator for Bulk Execution of a Sequential Algorithm

  • Conference paper
Algorithms and Architectures for Parallel Processing (ICA3PP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8631))

Abstract

A sequential algorithm is oblivious if an address accessed at each time does not depend on input data. Many important tasks including matrix computation, signal processing, sorting, dynamic programming, and encryption/decryption can be performed by oblivious sequential algorithms. Bulk execution of a sequential algorithm is to execute it for many independent inputs in turn or in parallel. The main contribution of this paper is to develop a tool that generates a CUDA C program for the bulk execution of an oblivious sequential algorithm. More specifically, our tool automatically converts a C language program describing an oblivious sequential algorithm into a CUDA C program that performs the bulk execution of the C language program. Generated C programs can be executed in CUDA-enabled GPUs. We have implemented CUDA C programs for the bulk execution of bitonic sorting algorithm, Floyd-Warshall algorithm, and Montgomery modulo multiplication. Our implementations running on GeForce GTX Titan for the bulk execution can be 199 times faster for bitonic sort, 54 times faster for Floyd-Warshall algorithm, and 78 times faster for Montgomery modulo multiplication, over the implementations on a single Intel Xeon CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hwu, W.W.: GPU Computing Gems Emerald Edition. Morgan Kaufmann (2011)

    Google Scholar 

  2. Man, D., Uda, K., Ito, Y., Nakano, K.: A GPU implementation of computing Euclidean distance map with efficient memory access. In: Proc. of International Conference on Networking and Computing, pp. 68–76 (December 2011)

    Google Scholar 

  3. Uchida, A., Ito, Y., Nakano, K.: Fast and accurate template matching using pixel rearrangement on the GPU. In: Proc. of International Conference on Networking and Computing, pp. 153–159. CS Press (December 2011)

    Google Scholar 

  4. Ogawa, K., Ito, Y., Nakano, K.: Efficient Canny edge detection using a GPU. In: Proc. of International Conference on Networking and Computing, pp. 279–280. IEEE CS Press (November 2010)

    Google Scholar 

  5. Nishida, K., Ito, Y., Nakano, K.: Accelerating the dynamic programming for the matrix chain product on the GPU. In: Proc. of International Conference on Networking and Computing, pp. 320–326 (December 2011)

    Google Scholar 

  6. Nishida, K., Nakano, K., Ito, Y.: Accelerating the dynamic programming for the optial poygon triangulation on the GPU. In: Xiang, Y., Stojmenovic, I., Apduhan, B.O., Wang, G., Nakano, K., Zomaya, A. (eds.) ICA3PP 2012, Part I. LNCS, vol. 7439, pp. 1–15. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Uchida, A., Ito, Y., Nakano, K.: An efficient GPU implementation of ant colony optimization for the traveling salesman problem. In: Proc. of International Conference on Networking and Computing, pp. 94–102. IEEE CS Press (December 2012)

    Google Scholar 

  8. NVIDIA Corporation: NVIDIA CUDA C programming guide version 5.0 (2012)

    Google Scholar 

  9. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of a parallel algorithm for computing euclidean distance map in multicore processors and GPUs. International Journal of Networking and Computing 1(2), 260–276 (2011)

    Google Scholar 

  10. NVIDIA Corporation: NVIDIA CUDA C best practice guide version 3.1 (2010)

    Google Scholar 

  11. Tani, K., Takafuji, D., Nakano, K., Ito, Y.: Bulk execution of oblivious algorithms on the unified memory machine, with gpu implementation. In: Proc. of International Parallel and Distributed Processing Symposium Workshops, pp. 586–595 (May 2014)

    Google Scholar 

  12. Batcher, K.E.: Sorting networks and their applications. In: Proc. AFIPS Spring Joint Comput. Conf., vol. 32, pp. 307–314 (1968)

    Google Scholar 

  13. Akl, S.G.: Parallel Sorting Algorithms. Academic Press (1985)

    Google Scholar 

  14. Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5(6), 345 (1962)

    Article  Google Scholar 

  15. Warshall, S.: A theorem on boolean matrices. Journal of the ACM 9(1), 11–12 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press (1990)

    Google Scholar 

  17. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shigemoto, K., Kawakami, K., Nakano, K.: Accelerating montgomery modulo multiplication for redundant radix-64k number system on the FPGA using dual-port block RAMs. In: Proc. of International Conference on Embedded and Ubiquitous Computing (EUC), pp. 44–51 (2008)

    Google Scholar 

  19. Bo, S., Kawakami, K., Nakano, K., Ito, Y.: An RSA encryption hardware algorithm using a single DSP block and a single block RAM on the fpga. International Journal of Networking and Computing 1(2), 277–289 (2011)

    Google Scholar 

  20. Nakano, K.: Simple memory machine models for GPUs. International Journal of Parallel, Emergent and Distributed Systems 29(1), 17–37 (2014)

    Article  Google Scholar 

  21. Nakano, K.: Sequential memory access on the unified memory machine with application to the dynamic programming. In: Proc. of International Symposium on Computing and Networking, pp. 85–94 (December 2013)

    Google Scholar 

  22. Aho, A.V., Ullman, J.D., Hopcroft, J.E.: Data Structures and Algorithms. Addison Wesley (1983)

    Google Scholar 

  23. Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Transactions on Computers 21, 948–960 (1972)

    Article  MATH  Google Scholar 

  24. Blum, T., Paar, C.: High-radix montgomery modular exponentiation on reconfigurable hardware. IEEE Trans. on Computers 50(7), 759–764 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Takafuji, D., Nakano, K., Ito, Y. (2014). C2CU : A CUDA C Program Generator for Bulk Execution of a Sequential Algorithm. In: Sun, Xh., et al. Algorithms and Architectures for Parallel Processing. ICA3PP 2014. Lecture Notes in Computer Science, vol 8631. Springer, Cham. https://doi.org/10.1007/978-3-319-11194-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11194-0_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11193-3

  • Online ISBN: 978-3-319-11194-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics