Nothing Special   »   [go: up one dir, main page]

Skip to main content

Churn Prediction in Telecommunication Industry Using Rough Set Approach

  • Chapter
New Trends in Computational Collective Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 572))

Abstract

The Customer churn is a crucial activity in rapidly growing and mature competitive telecommunication sector and is one of the greatest importance for a project manager. Due to the high cost of acquiring new customers, customer churn prediction has emerged as an indispensable part of telecom sectors’ strategic decision making and planning process. It is important to forecast customer churn behavior in order to retain those customers that will churn or possible may churn. This study is another attempt which makes use of rough set theory, a rule-based decision making technique, to extract rules for churn prediction. Experiments were performed to explore the performance of four different algorithms (Exhaustive, Genetic, Covering, and LEM2). It is observed that rough set classification based on genetic algorithm, rules generation yields most suitable performance out of the four rules generation algorithms. Moreover, by applying the proposed technique on publicly available dataset, the results show that the proposed technique can fully predict all those customers that will churn or possibly may churn and also provides useful information to strategic decision makers as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hadden, J., Tiwari, A., Roy, R., Rute, D.: Computer assisted customer churn management: State-of-theart and future trends. IJCOR 10, 2902–2917 (2007)

    Google Scholar 

  2. Sharma, A., Kumar, P.: A Neural Network based Approach for Predicting Customer Churn in Cellular Network Services. IJCSA Application 27, 0975–8887 (2011)

    Google Scholar 

  3. Wouter, V., David, M., Christophe, M., Bart, B.: Building comprehensible customer churn prediction models with advance rule induction techniques. Expert Systems with Applications 38, 2354–2364 (2011)

    Article  Google Scholar 

  4. Kirui, C., Hong, L., Wilson, C., Kirui, H.: Predicting Customer Churn in Mobile Telephony Industry Using Probabilistic Classifiers in Data Mining. IJCS 10 (2013)

    Google Scholar 

  5. Huang, B., Kechadi, M.T., Buckley, B.: Customer churn prediction in telecommunications. Expert Systems with Applications 39, 1414–1425 (2012)

    Article  Google Scholar 

  6. Lina, C.S., Gwo-Hshiung, T., Yang Chieh, C.: Combined rough set theory and flow network graph to predict customer churn in credit card accounts. Expert System with Application 38, 8–15 (2011)

    Article  Google Scholar 

  7. Yan, L., Wolniewicz, R.H., Dodier, R.: Predicting customer behavior in telecommunications. IEEE Intelligent Systems 2, 50–58 (2004)

    Article  Google Scholar 

  8. Lazarov, V., Capota, M.: Churn Prediction, Business Analytics Course. TUM Computer Science (2007)

    Google Scholar 

  9. Den Poel, D.V., Lariviere, B.: Customer attrition analysis for financial services using proportional hazard models. European Journal of Operational Research, 196–217 (2004)

    Google Scholar 

  10. Chitra, K., Subashini, B.: Customer Retention in Banking Sector using Predictive Data Mining Technique. In: ICIT (2011)

    Google Scholar 

  11. Devi, P., Madhavi, S.: Prediction of Churn Behavior of Bank Customers Using Data Mining Tools. Business Intelligence Journal 5 (2012)

    Google Scholar 

  12. Tiwari, J., Hadden, A., Roy, R., Ruta, D.: Churn Prediction using Complaints Data. International Journal of Intelligent Technology 13, 158–163 (2006)

    Google Scholar 

  13. Lee, K.C., Chung, N.H., Kim, J.K.: A fuzzy cognitive map approach to integrating explicit knowledge and tacit knowledge: Emphasis on the churn analysis of credit card holders. Information Systems Review 11, 113–133 (2001)

    Google Scholar 

  14. Kawale, J., Aditya, Srivastava, J.: Churn prediction in MMORPGs: A social influence based approach. IEEE Computational Science and Engineering 4 (2009)

    Google Scholar 

  15. Suznjevic, M., Stupar, L., Matijasevic, M.: MMORPG player behavior model based on player action categories. In: 10th Workshop on NSSG. IEEE Press (2011)

    Google Scholar 

  16. Liou, J.J.H.: A novel decision rules approach for customer relationship management of the airline market. Journal of Expert Systems with Applications (2008)

    Google Scholar 

  17. Oentaryo, R.J., Lim, E.-P., Lo, D., Zhu, F., Prasetyo, P.K.: Collective Churn Prediction in Social Network. In: ASONAM. IEEE/ACM (2012)

    Google Scholar 

  18. Guo, L., Tan, E., Chen, S., Zhang, X., Zhao, Y.E.: Analyzing patterns of user content generation in online social networks. In: The 15th ACM SIGKDD, pp. 369–378 (2009)

    Google Scholar 

  19. Soeini, R.A., Keyvan, V.R.: Proceedings of Computer Science & Information Technology 30 (2012)

    Google Scholar 

  20. Burez, J., Van den Poel, D.: Handling class imbalance in customer churn prediction. Expert Systems with Applications 36, 4626–4636 (2009)

    Article  Google Scholar 

  21. Ahn, J.-H., Han, S.P., Lee, Y.-S.: Customer churn analysis: Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry. Telecommunications Policy 30, 552–568 (2006)

    Article  Google Scholar 

  22. Kim, M.K., Jeong, D.H.: The effects of customer satisfaction and switching barriers on customer loyalty in Korean mobile telecommunication services. Telecom Policy 28,145–159 (2004)

    Google Scholar 

  23. Shaaban, E., Helmy, Y., Khedr, A., Nasr, M.: A Proposed Churn Prediction Model. IJERA 2, 693–697 (2012)

    Google Scholar 

  24. Qureshi, S.A., Rehman, A.S., Qamar, A.M., Kamal, A., Rehman, A.: Telecommunication Subscribers’ Churn Prediction Model Using Machine Learning. IEEE (2013)

    Google Scholar 

  25. Kirui, C., Li, H., Cheruiyot, W., Kirui, H.: Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining. IJCSA 10, 1694–1814 (2013)

    Google Scholar 

  26. Innut, B., Churn, G.T.: Prediction in the telecommunications sector using support vector machines. Annals of Oradea University Fascicle of Mgt & Technological Engineering (2013)

    Google Scholar 

  27. Au, W.H., Chan, K.C., Yao, X.: A novel evolutionary data mining algorithm with applications to churn prediction. IEEE Trans. 7, 532–545 (2003)

    Google Scholar 

  28. Hossein, A., Mostafa, S., Tarokh, M.J.: The Application of Neuro-Fuzzy Classifier for Customer Churn Prediction. Procedia Information Technology & Computer Science 1, 1643–1648 (2012)

    Google Scholar 

  29. Farquad, M.A., Vadlamani, R., Raju, B.: Churn Prediction using comprehensible support vector machine: An Analytical CRM application. Elsevier Applied Soft Computing 19, 31–40 (2014)

    Article  Google Scholar 

  30. Mozer, M., Wolniewicz, R., Grimes, D., Johnson, E., Kaushansky, H.: Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry. IEEE Transactions on Neural Networks 11, 690–696 (2000)

    Article  Google Scholar 

  31. Pawlak, Z.: Rough sets, rough relations and rough functions. Fundamenta informaticae 27, 103–108 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 5, 341–356 (1982)

    Article  MathSciNet  Google Scholar 

  33. Zdzislaw, P.: Rough Set: theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  34. Bazan, J., Szczuka, M.S.: The rough set exploration system. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  35. Nguyen, H.S., Nguyen, S.H.: Analysis of stulong data by rough set exploration system (RSES). In: Proceedings of the ECML/PKDD Workshop (2003)

    Google Scholar 

  36. Bazan, J., Nguyen, H.S., Nguyen, S. H., Synak, P., Wróblewski, J.: Rough Set Algorithms in Classification Problem, pp. 49–88. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  37. Wroblewski, J.: Genetic algorithms in decomposition and classification problem. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in Knowledge Discovery 1, pp. 471–487. Physica Verlag, Heidelberg (1998)

    Chapter  Google Scholar 

  38. Grzymala-Busse, J.: A New Version of the Rule Induction System LERS. Fundamenta Informaticae 31, 27–39 (1997)

    MATH  Google Scholar 

  39. Burez, J.D., Van den Poel: Handling class imbalance in customer churn prediction. Expert Systems with Applications 36, 4626–4636 (2009)

    Article  Google Scholar 

  40. Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M., Haesen: Mining software repositories for comprehensible software fault prediction models. Journal of Systems and Software 81, 823–839 (2008)

    Article  Google Scholar 

  41. Source of Dataset, http://www.sgi.com/tech/mlc/db/

  42. Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learning workbench. In: Proceedings of the IEEE Intelligent Information Systems (1994)

    Google Scholar 

  43. John, H.: A Customer Profiling Methodology for Churn Prediction. P.hD thesis at Cranfield University (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Amin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amin, A., Shehzad, S., Khan, C., Ali, I., Anwar, S. (2015). Churn Prediction in Telecommunication Industry Using Rough Set Approach. In: Camacho, D., Kim, SW., Trawiński, B. (eds) New Trends in Computational Collective Intelligence. Studies in Computational Intelligence, vol 572. Springer, Cham. https://doi.org/10.1007/978-3-319-10774-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10774-5_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10773-8

  • Online ISBN: 978-3-319-10774-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics