Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Effectiveness of Sampling for Evolutionary Optimization in Noisy Environments

  • Conference paper
Parallel Problem Solving from Nature – PPSN XIII (PPSN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Included in the following conference series:

Abstract

Sampling has been often employed by evolutionary algorithms to cope with noise when solving noisy real-world optimization problems. It can improve the estimation accuracy by averaging over a number of samples, while also increasing the computation cost. Many studies focused on designing efficient sampling methods, and conflicting empirical results have been reported. In this paper, we investigate the effectiveness of sampling in terms of rigorous running time, and find that sampling can be ineffective. We provide a general sufficient condition under which sampling is useless (i.e., sampling increases the running time for finding an optimal solution), and apply it to analyzing the running time performance of (1+1)-EA for optimizing OneMax and Trap problems in the presence of additive Gaussian noise. Our theoretical analysis indicates that sampling in the above examples is not helpful, which is further confirmed by empirical simulation results.

This research was supported by the National Science Foundation of China (61375061, 61333014) and the Jiangsu Science Foundation (BK2012303).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aizawa, A.N., Wah, B.W.: Scheduling of genetic algorithms in a noisy environment. Evolutionary Computation 2(2), 97–122 (1994)

    Article  Google Scholar 

  2. Arnold, D.V.: Noisy Optimization with Evolution Strategies. Kluwer, Norwell (2002)

    Book  MATH  Google Scholar 

  3. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific, Singapore (2011)

    Google Scholar 

  4. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  5. Bartz-Beielstein, T., Blum, D., Branke, J.: Particle swarm optimization and sequential sampling in noisy environments. In: Metaheuristics. Operations Research/Computer Science Interfaces Series, vol. 39, pp. 261–273. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Beyer, H.G.: Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Computer Methods in Applied Mechanics and Engineering 186(2), 239–267 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Branke, J., Schmidt, C.: Selection in the presence of noise. In: Proceedings of the 5th ACM Conference on Genetic and Evolutionary Computation, Chicago, IL, pp. 766–777 (2003)

    Google Scholar 

  8. Branke, J., Schmidt, C.: Sequential sampling in noisy environments. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 202–211. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Branke, J., Schmidt, C., Schmec, H.: Efficient fitness estimation in noisy environments. In: Proceedings of the 3rd ACM Conference on Genetic and Evolutionary Computation, San Francisco, CA, pp. 243–250 (2001)

    Google Scholar 

  10. Cantú-Paz, E.: Adaptive sampling for noisy problems. In: Proceedings of the 6th ACM Conference on Genetic and Evolutionary Computation, Seattle, WA, pp. 947–958 (2004)

    Google Scholar 

  11. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doerr, B., Hota, A., Kötzing, T.: Ants easily solve stochastic shortest path problems. In: Proceedings of the 14th ACM Conference on Genetic and Evolutionary Computation, Philadelphia, PA, pp. 17–24 (2012)

    Google Scholar 

  14. Droste, S.: Analysis of the (1+1) EA for a noisy OneMax. In: Proceedings of the 6th ACM Conference on Genetic and Evolutionary Computation, Seattle, WA, pp. 1088–1099 (2004)

    Google Scholar 

  15. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276(1-2), 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence 127(1), 57–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iacca, G., Neri, F., Mininno, E.: Noise analysis compact differential evolution. International Journal of Systems Science 43(7), 1248–1267 (2012)

    Article  Google Scholar 

  18. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  19. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Springer, Berlin (2010)

    Book  Google Scholar 

  20. Park, T., Ryu, K.R.: Accumulative sampling for noisy evolutionary multi-objective optimization. In: Proceedings of the 13th ACM Conference on Genetic and Evolutionary Computation, Dublin, Ireland, pp. 793–800 (2011)

    Google Scholar 

  21. Qian, C., Yu, Y., Zhou, Z.-H.: On algorithm-dependent boundary case identification for problem classes. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 62–71. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Sano, Y., Kita, H.: Optimization of noisy fitness functions by means of genetic algorithms using history of search with test of estimation. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, Honolulu, HI, pp. 360–365 (2002)

    Google Scholar 

  23. Siegmund, F., Ng, A.H., Deb, K.: A comparative study of dynamic resampling strategies for guided evolutionary multi-objective optimization. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp. 1826–1835 (2013)

    Google Scholar 

  24. Stagge, P.: Averaging efficiently in the presence of noise. In: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, pp. 188–197 (1998)

    Google Scholar 

  25. Syberfeldt, A., Ng, A., John, R.I., Moore, P.: Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling. European Journal of Operational Research 204(3), 533–544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu, Y., Zhou, Z.-H.: A new approach to estimating the expected first hitting time of evolutionary algorithms. Artificial Intelligence 172(15), 1809–1832 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Z., Xin, T.: Immune algorithm with adaptive sampling in noisy environments and its application to stochastic optimization problems. IEEE Computational Intelligence Magazine 2(4), 29–40 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Qian, C., Yu, Y., Jin, Y., Zhou, ZH. (2014). On the Effectiveness of Sampling for Evolutionary Optimization in Noisy Environments. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics