Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 315))

Abstract

Starting with a descriptive characterization of probability on the intuitionistic fuzzy sets, different formulations of continuity are presented. The main instrument is a Cignoli representation theorem on IF probabilities by classical Kolmogorovian probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications. STUDFUZZ. Physica Verlag, Heidelberg (1999)

    Book  MATH  Google Scholar 

  2. Atanassov, K.T.: On Intuitionistic Fuzzy Sets. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  3. Cignoli, L., D’Ottaviano, M., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  4. Ciungu, L., Riečan, B.: General form of probabilities on IF-sets. In: Fuzzy Logic and Applications. Proc. WILF Palermo, pp. 101–107 (2009)

    Google Scholar 

  5. Ciungu, L., Riečan, B.: Representation theorem for probabilities on IFS-events. Information Sciences 180, 793–798 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciungu, L., Kelemenová, J., Riečan, B.: A new point of view to the inclusion exclusion principle. In: 6th Int. Conf. on Intelligent Systems, IS 2012, Varna, Bulgaria, pp. 142–144 (2012)

    Google Scholar 

  7. Chovanec, F.: Difference Posets and their Graphical Representation. Liptovsk y Mikuláš (2014) (in Slovak)

    Google Scholar 

  8. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht (2000)

    Google Scholar 

  9. Dvurečenskij, A., Rachunek: Riečan and Bosbach states for bounded non-commutative RI-monoids. Math. Slovaca 56, 487–500 (2006)

    Google Scholar 

  10. Foulis, D., Bennett, M.: Efect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994)

    Article  MathSciNet  Google Scholar 

  11. Grzegorzewski, P., Mrowka, E.: Probability of intuistionistic fuzzy events. In: Grzegorzewski, P., et al. (eds.) Soft Metods in Probability, Statistics and Data Analysis, pp. 105–115 (2002)

    Google Scholar 

  12. Kopka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21–34 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Lendelová, K.: A note on invariant observables. International Journal of Theoretical Physics 45, 915–923 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Michalíková, A.: Absolute value and limit of the function defined on IF sets. Notes on Intuitionistic Fuzzy Sets 18, 8–15 (2012)

    MATH  Google Scholar 

  15. Montagna, F.: An algebraic approach to propositional fuzzy logic. J. Logic Lang. Inf (D. Mundici et al. eds.), Special issue on Logics of Uncertainty 9, 91–124 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Riečan, B.: A descriptive definition of the probability on intuitionistic fuzzy sets. In: Wagenecht, M., Hampet, R. (eds.) EUSFLAT 2003, pp. 263–266 (2003)

    Google Scholar 

  17. Riečan, B.: Representation of probabilities on IFS events. In: Lopez-Diaz, et al. (eds.) Soft Methodology and Random Information Systems, pp. 243–248 (2004)

    Google Scholar 

  18. Riečan, B.: On a problem of Radko Mesiar: general form of IF-probabilities. Fuzzy Sets and Systems 152, 1485–1490 (2006)

    Google Scholar 

  19. Riečan, B.: Probability theory on intuitionistic fuzzy events. In: Aguzzoli, S., et al. (eds.) Algebraic and Proof theoretic Aspects of Non-Classical Logic, Papers in Honour of Daniele Mundici’s 60th Birthday. LNCS, pp. 290–308. Springer, Heidelberg (2007)

    Google Scholar 

  20. Riečan, B.: Analysis of Fuzzy Logic Models. In: Koleshko, V.M. (ed.) Intelligent Systems, pp. 219–244. INTECH (2012)

    Google Scholar 

  21. Riečan, B., Mundici, D.: Probability in MV-algebras. In: Pap, E. (ed.) Handbook of Measure Theory II, pp. 869–910. Elsevier, Heidelberg (2002)

    Google Scholar 

  22. Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  23. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–358 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zadeh, L.A.: Probability measures on fuzzy sets. J. Math. Abal. Appl. 23, 421–427 (1968)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beloslav Riečan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riečan, B., Michalíková, A. (2015). On the Continuity of Probability on IF Sets. In: Grzegorzewski, P., Gagolewski, M., Hryniewicz, O., Gil, M. (eds) Strengthening Links Between Data Analysis and Soft Computing. Advances in Intelligent Systems and Computing, vol 315. Springer, Cham. https://doi.org/10.1007/978-3-319-10765-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10765-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10764-6

  • Online ISBN: 978-3-319-10765-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics