Nothing Special   »   [go: up one dir, main page]

Skip to main content

Empirical Sensitivity Analysis on the Influence of the Shape of Fuzzy Data on the Estimation of Some Statistical Measures

  • Chapter
Strengthening Links Between Data Analysis and Soft Computing

Abstract

This paper means an introduction to analyze whether the choice of the shape for fuzzy data in their statistical analysis can or cannot affect the conclusions of such an analysis. More concretely, samples of fuzzy data are simulated in accordance with different assumptions (distributions) concerning four relevant points (namely, those determining their core and support), and later, by preserving core and support, the ‘arms’ are changed by considering trapezoidal, Π-curves, and some LR fuzzy numbers. For the simulations obtained with each of the considered shapes, several characteristics have been estimated: Aumann-type mean, 1-norm and wabl/ldev/rdev medians and Fréchet’s variance. A comparative analysis with the bias, mean squared distance and variance of the estimates is finally included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ban, A., Coroianu, L., Grzegorzewski, P.: Trapezoidal approximation and aggregation. Fuzzy Sets Syst. 177, 45–59 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanco-Fernández, A., Casals, M.R., Colubi, A., Corral, N., García-Bárzana, M., Gil, M.A., González-Rodríguez, G., López, M.T., Lubiano, M.A., Montenegro, M., Ramos-Guajardo, A.B., De la Rosa de Sáa, S., Sinova, B.: A distance-based statistical analysis of fuzzy number-valued data. Int. J. Approx. Reas (2014), doi:10.1016/j.ijar.2013.09.020

    Google Scholar 

  3. Cox, E.: The fuzzy Systems Handbook. Academic Press, Cambridge (1994)

    MATH  Google Scholar 

  4. De la Rosa de Sáa, S., Gil, M.A., González-Rodríguez, G., López, M.T., Lubiano, M.A.: Fuzzy rating scale-based questionnaires and their statistical analysis. IEEE Trans. Fuzzy Syst (2014), doi:10.1109/TFUZZ.2014.2307895

    Google Scholar 

  5. Diamond, P., Kloeden, P.: Metric spaces of fuzzy sets. Fuzzy Sets Syst. 35, 241–249 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grzegorzewski, P.: Trapezoidal approximations of fuzzy numbers preserving the expected interval - algorithms and properties. Fuzzy Sets Syst. 159, 1354–1364 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grzegorzewski, P.: Fuzzy number approximation via shadowed sets. Inform. Sci. 225, 35–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grzegorzewski, P., Pasternak-Winiarska, K.: Trapezoidal approximations of fuzzy numbers with restrictions on the support and core. In: Proc. 7th Conf. EUSFLAT-2011 and LFA-2011, pp. 749–756. Atlantis Press, Paris (2011)

    Google Scholar 

  9. Pedrycz, W.: Why triangular membership functions? Fuzzy Sets Syst. 64(1), 21–30 (1994)

    Article  MathSciNet  Google Scholar 

  10. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sinova, B., De la Rosa de Sáa, S., Gil, M.A.: A generalized L 1-type metric between fuzzy numbers for an approach to central tendency of fuzzy data. Inform. Sci. 242, 22–34 (2013)

    Article  MathSciNet  Google Scholar 

  12. Sinova, B., Gil, M.A., Colubi, A., Van Aelst, S.: The median of a random fuzzy number. The 1-norm distance approach. Fuzzy Sets Syst. 200, 99–115 (2012)

    Article  MATH  Google Scholar 

  13. Stefanini, L., Sorini, L., Guerra, M.L.: Parametric representation of fuzzy numbers and applications to fuzzy calulus. Fuzzy Sets Syst. 157, 2423–2455 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Asunción Lubiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lubiano, M.A., de la Rosa de Sáa, S., Sinova, B., Gil, M.Á. (2015). Empirical Sensitivity Analysis on the Influence of the Shape of Fuzzy Data on the Estimation of Some Statistical Measures. In: Grzegorzewski, P., Gagolewski, M., Hryniewicz, O., Gil, M. (eds) Strengthening Links Between Data Analysis and Soft Computing. Advances in Intelligent Systems and Computing, vol 315. Springer, Cham. https://doi.org/10.1007/978-3-319-10765-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10765-3_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10764-6

  • Online ISBN: 978-3-319-10765-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics