Nothing Special   »   [go: up one dir, main page]

Skip to main content

Decidable Problems for Unary PFAs

  • Conference paper
Quantitative Evaluation of Systems (QEST 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8657))

Included in the following conference series:

Abstract

Given a PFA A and a cut-point λ, the isolation problem asks if there is a bound ε > 0 such that the acceptance probability of every word is bounded away from λ by ε. In this paper we show that the isolation problem for PFAs with a unary input alphabet is (a) coNPcomplete, if the cut-point is 0 or 1, and (b) is in coNP RP and coNP-hard, if the cut-point is in (0, 1). We also show that the language containment problem, language equivalence problem, the emptiness problem and the universality problem for unary PFAs with limit isolated cut-points is in the fourth level of counting hierarchy C 4 P (and hence in PSPACE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Akshay, S., Genest, B., Thiagarajan, P.S.: Approximate verification of the symbolic dynamics of markov chains. In: LICS, pp. 55–64 (2012)

    Google Scholar 

  2. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Bro Miltersen, P.: On the complexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)

    Article  MATH  Google Scholar 

  3. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)

    Google Scholar 

  4. Bertoni, A.: The solution of problems relative to probabilistic automata in the frame of formal language theory. In: Siefkes, D. (ed.) GI 1974. LNCS, vol. 26, pp. 107–112. Springer, Heidelberg (1975)

    Google Scholar 

  5. Chadha, R., Sistla, A.P., Viswanathan, M.: Probabilistic automata with isolated cut-points. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 254–265. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs (extended abstract). In: 30th Annual Symposium on Foundations of Computer Science, pp. 462–467 (1989)

    Google Scholar 

  7. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Equivalence of labeled markov chains. Inernational Journal of Foundations of Computer Science 19(3), 549–563 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gantmacher, F.R.: Applications of the Theory of Matrices. Dover Books on Mathematics Series, Dover (2005)

    Google Scholar 

  9. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: Decidable and undecidable problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 527–538. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Gramlich, G.: Probabilistic and nondeterministic unary automata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 460–469. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Language equivalence for probabilistic automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 526–540. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: On the complexity of the equivalence problem for probabilistic automata. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 467–481. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Korthikanti, V.A., Viswanathan, M., Agha, G., Kwon, Y.: Reasoning about mdps as transformers of probability distributions. In: QEST, pp. 199–208 (2010)

    Google Scholar 

  14. Kwon, Y., Agha, G.: Linear Inequality LTL (iLTL): A Model Checker for Discrete Time Markov Chains. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 194–208. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Kwon, Y.M., Agha, G.: A Markov Reward Model for Software Reliability. In: IEEE International Parallel and Distributed Processing Symposium, IPDPS 2007, pp. 1–6 (2007)

    Google Scholar 

  16. Norris, J.R.: Markov Chains. Cambridge University Press (1997)

    Google Scholar 

  17. Paz, A.: Introduction to probabilistic automata. Academic Press (1971)

    Google Scholar 

  18. Rabin, M.O.: Probabilistic automata. Information and Computation 6(3), 230–245 (1963)

    MATH  Google Scholar 

  19. Rutten, J.M., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems. AMS (2004)

    Google Scholar 

  20. Salomaa, A., Soittola, M., Bauer, F.L., Gries, D.: Automata-theoretic aspects of formal power series. Texts and monographs in computer science. Springer (1978)

    Google Scholar 

  21. Schönhage, A.: On the power of random access machines. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 520–529. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  22. Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4(2-3), 245–270 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  23. Senata, E.: Non-negative Matrices and Markov Chains. George Allen & Unwin Ltd. (1973)

    Google Scholar 

  24. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary report. In: Proc. of the 5th Ann. ACM Symposium on Theory of Computing, pp. 1–9 (1973)

    Google Scholar 

  25. Turakainen, P.: On stochastic languages. Information and Control 12(4), 304–313 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tzeng, W.-G.: A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM J. Comput. 21(2), 216–227 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wagner, K.W.: Some observations on the connection between counting and recursion. Theoretical Computer Science 47(3), 131–147 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chadha, R., Kini, D., Viswanathan, M. (2014). Decidable Problems for Unary PFAs. In: Norman, G., Sanders, W. (eds) Quantitative Evaluation of Systems. QEST 2014. Lecture Notes in Computer Science, vol 8657. Springer, Cham. https://doi.org/10.1007/978-3-319-10696-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10696-0_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10695-3

  • Online ISBN: 978-3-319-10696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics