Abstract
This paper addresses the problem of detecting coherent motions in crowd scenes and subsequently constructing semantic regions for activity recognition. We first introduce a coarse-to-fine thermal-diffusion-based approach. It processes input motion fields (e.g., optical flow fields) and produces a coherent motion filed, named as thermal energy field. The thermal energy field is able to capture both motion correlation among particles and the motion trends of individual particles which are helpful to discover coherency among them. We further introduce a two-step clustering process to construct stable semantic regions from the extracted time-varying coherent motions. Finally, these semantic regions are used to recognize activities in crowded scenes. Experiments on various videos demonstrate the effectiveness of our approach.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: CVPR (2007)
Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Optical Engineering (1992)
Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)
Brox, T., Rousson, M., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image Vis. Comput. (2010)
Bruh, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int’l J. Computer Vision (2005)
Carslaw, H., Jaeger, J.: Conduction of Heat in Solids. IEEE Trans. Pattern Analysis and Machine Intelligence (1986)
Chang, C., Lin, C.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)
Cremers, D., Soatto, S.: Motion competition: A variational approach to piecewise parametric motion segmentation. Int. J. Comput. Vis. (2005)
Cui, X., Liu, Q., Gao, M., Metaxas, D.N.: Abnormal detection using interaction energy potentials. In: CVPR (2011)
Edelsbrunner, H., Shah, N.: Incremental topological flipping works for regular triangulations. Algorithmica (1996)
Hu, M., Ali, S., Shah, M.: Learning motion patterns in crowded scenes using motion flow field. In: ICPR (2008)
Li, J., Gong, S., Xiang, T.: Scene segmentation for behaviour correlation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 383–395. Springer, Heidelberg (2008)
Lin, D., Grimson, E., Fisher, J.: Learning visual flows: a lie algebraic approach. In: CVPR (2009)
Loy, C.C., Xiang, T., Gong, S.: Multi-camera activity correlation analysis. In: CVPR (2009)
Lu, Z., Yang, X., Lin, W., Zha, H., Chen, X.: Inferring user image search goals under the implicit guidance of users. IEEE Trans. Circuits and Systems for Video Technology (2014)
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR (2009)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)
Wang, H., Klaser, A., Schmid, C., Liu, C.: Action recognition by dense trajectories. In: CVPR (2011)
Weickert, J.: Anisotropic diffusion in image processing. Teubner, Stuttgart (1998)
Wu, S., Wong, H.: Crowd motion partitioning in a scattered motion field. IEEE Trans. Systems, Man, and Cybernetics (2012)
Wu, Y., Wang, Y., Jia, Y.: Adaptive diffusion flow active contours for image segmentation. Computer Vision and Image Understanding, 1421–1435 (2013)
Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. IEEE Trans. Pattern Analysis and Machine Intelligence 34(9), 1744–1757 (2012)
Xu, T., Peng, P., Fang, X., Su, C., Wang, Y., Tian, Y., Zeng, W., Huang, T.: Single and multiple view detection, tracking and video analysis in crowded environments. In: AVSS (2012)
Zhan, B., Monekosso, D., Remagnino, P., Velastin, S., Xu, L.: Crowd analysis: a survey. Machine Vision and Applications (2008)
Zhou, B., Tang, X., Wang, X.: Coherent filtering: Detecting coherent motions from crowd clutters. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 857–871. Springer, Heidelberg (2012)
Zhou, B., Tang, X., Wang, X.: Measuring crowd collectiveness. In: CVPR (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, W., Lin, W., Chen, Y., Wu, J., Wang, J., Sheng, B. (2014). Finding Coherent Motions and Semantic Regions in Crowd Scenes: A Diffusion and Clustering Approach. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8689. Springer, Cham. https://doi.org/10.1007/978-3-319-10590-1_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-10590-1_49
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10589-5
Online ISBN: 978-3-319-10590-1
eBook Packages: Computer ScienceComputer Science (R0)