Abstract
Tractography in diffusion tensor imaging estimates connectivity in the brain through observations of local diffusivity. These observations are noisy and of low resolution and, as a consequence, connections cannot be found with high precision. We use probabilistic numerics to estimate connectivity between regions of interest and contribute a Gaussian Process tractography algorithm which allows for both quantification and visualization of its posterior uncertainty. We use the uncertainty both in visualization of individual tracts as well as in heat maps of tract locations. Finally, we provide a quantitative evaluation of different metrics and algorithms showing that the adjoint metric [8] combined with our algorithm produces paths which agree most often with experts.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103(3), 247–254 (1994)
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44(4), 625–632 (2000)
Catani, M., de Schotten, M.T.: A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44(8), 1105–1132 (2008)
Chkrebtii, O., Campbell, D., Girolami, M., Calderhead, B.: Bayesian uncertainty quantification for differential equations. arXiv stat.ME 1306.2365 (June 2013)
Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)
van Essen, D., et al.: The Human Connectome Project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)
van Essen, D., et al.: The WU-Minn Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013)
Fuster, A., et al.: A novel Riemannian metric for geodesic tractography in DTI. In: Computational Diffusion MRI and Brain Connectivity. Mathematics and Visualization, pp. 97–104 (2014)
Glasser, M., et al.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013)
Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I – Nonstiff Problems. Springer (1987)
Hao, X., Whitaker, R.T., Fletcher, P.T.: Adaptive Riemannian metrics for improved geodesic tracking of white matter. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 13–24. Springer, Heidelberg (2011)
Hennig, P., Hauberg, S.: Probabilistic solutions to differential equations and their application to Riemannian statistics. In: AISTATS. JMLR, W&CP, vol. 33 (2014)
Lenglet, C., Deriche, R., Faugeras, O.: Inferring white matter geometry from diffusion tensor MRI: Application to connectivity mapping. In: Pajdla, T., Matas, J.(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 127–140. Springer, Heidelberg (2004)
O’Donnell, L., Haker, S., Westin, C.-F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: Elliptic PDEs and geodesics in a tensor-warped space. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 459–466. Springer, Heidelberg (2002)
Parker, G., et al.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J. Magn. Reson. Imaging 18(2), 242–254 (2003)
Prados, E., et al.: Control theory and fast marching techniques for brain connectivity mapping. In: CVPR, pp. 1076–1083 (2006)
Rasmussen, C., Williams, C.: GPs for Machine Learning. MIT Press (2006)
Schultz, T., et al.: Fuzzy fibers: Uncertainty in dMRI tractography. arXiv cs.CV 1307.3271 (2013)
Skilling, J.: Bayesian solution of ordinary differential equations. Maximum Entropy and Bayesian Methods, Seattle (1991)
Sotiropoulos, S.N., et al.: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE. Magn. Reson. Med. 70(6), 1682–1689 (2013)
Wassermann, D., Rathi, Y., Bouix, S., Kubicki, M., Kikinis, R., Shenton, M., Westin, C.-F.: White matter bundle registration and population analysis based on gaussian processes. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 320–332. Springer, Heidelberg (2011)
Zhang, Y., et al.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE TMI 20(1), 45–57 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S. (2014). Probabilistic Shortest Path Tractography in DTI Using Gaussian Process ODE Solvers. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. MICCAI 2014. Lecture Notes in Computer Science, vol 8675. Springer, Cham. https://doi.org/10.1007/978-3-319-10443-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-10443-0_34
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10442-3
Online ISBN: 978-3-319-10443-0
eBook Packages: Computer ScienceComputer Science (R0)