Abstract
In this paper, we present a new knowledge extraction method on Big data era.We introduce new concepts, anteroposterior correlation, and propose an extraction method of anteroposterior correlation. The anteroposterior correlation means the correlation based on the time anteroposterior relation. We consider that Heterogeneity, continuity, and visualization are the most critical features of Big data analytics, which provides a scale and connection merits based on them. No current data analysis methods are based on opened assumptions. Big data analytics provides a new data analysis method based on opening assumptions. In this paper, we especially focus on an aspect of heterogeneity. We discover a correlation in consideration of the continuity of time. By our method, we effectively discover relationships between heterogeneous things, events and phenomena. The anteroposterior correlations are represented in relative comparison with each conditional probability distribution. The one of the features of our method is a measurement correlation by using conditional probability. That is, we calculate the correlation relative by representing all in conditional probability, no absolutely. Our method is determined higher correlation by comparison to each heterogeneous thing, event and phenomenon. This is the most important points on the Big data era. When you apply current association rule extraction techniques, you obtain too big rule base to organize them. By our method, we realize the one of the methods for decision mining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Magazine Communications of the ACM CACM Homepage Archive 18(11), 613–620 (1975)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)
Kitagawa, T., Kiyoki, Y.: A mathematical model of meaning and its application to multidatabase systems. In: RIDE-IMS 1993: Proceedings of the 3rd International Workshop on Research Issues in Data Engineering: Interoperability in Multidatabase Systems, pp. 130–135 (1993)
Kiyoki, Y., Kitagawa, T., Hayama, T.: A metadatabase system for semantic image search by a mathematical model of meaning. SIGMOD Rec. 23(4), 34–41 (1994)
Takano, K., Kiyoki, Y.: A superordinate and subordinate relationship computation method and its application to aerospace engineering information. In: ACST 2007: Proceedings of the Third Conference on IASTED International Conference, Anaheim, CA, USA, pp. 510–516 (2007)
Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet: An on-line lexical database. Journal of Lexicography 3(4), 235–244 (1990)
Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man and Cybernetics 19(1), 17–30 (1989)
Kim, Y., Kim, J.: A model of knowledge based information retrieval with hierarchical concept graph. Journal of Documentation 46(2), 113–136 (1990)
Lee, J., Kim, M., Lee, Y.: Information retrieval based on conceptual distance in is-a hierarchies. Journal of Documentation 49(2), 188–207 (1993)
Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: IJCAI: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 448–453 (1995)
Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain structure to compute similarity. ACM Trans. Inf. Syst. 21(1), 64–93 (2003)
Wimalasuriya, D., Dou, D.: Ontology-based information extraction: An introduction and a survey of current approaches. Journal of Information Science 36(3), 306–323 (2010)
Saggion, H., Funk, A., Maynard, D., Bontcheva, K.: Ontology-Based Information Extraction for Business Intelligence. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp. 843–856. Springer, Heidelberg (2007)
Wu, F., Hoffmann, R., Weld, D.S.: Information extraction from Wikipedia: moving down the long tail. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2008), pp. 731–739. ACM, New York (2008), http://doi.acm.org/10.1145/1401890.1401978 , doi:10.1145/1401890.1401978
Cimiano, P., Handschuh, S., Staab, S.: Towards the self-annotating web. In: Proceedings of the 13th International Conference on World Wide Web (WWW 2004), pp. 462–471. ACM, New York (2004), http://doi.acm.org/10.1145/988672.988735 , doi:10.1145/988672.988735
McDowell, L.K., Cafarella, M.: Ontology-Driven Information Extraction with OntoSyphon. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 428–444. Springer, Heidelberg (2006)
Maedche, A., Neumann, G., Staab, S.: Bootstrapping an ontology-based information extraction system. In: Szczepaniak, P.S., Segovia, J., Kacprzyk, J., Zadeh, L.A. (eds.) Intelligent Exploration of the Web, pp. 345–359. Physica-Verlag GmbH, Heidelberg (2003)
Maedche, A., Staab, S.: The Text-to-Onto Ontology Learning Environment. In: Software Demonstration at the 8th International Comference Conceputual Structures. Springer, Berlin (2000)
Buitelaar, P., Siegel, M.: The Text-to-Onto Ontology Learning Environment. In: Proceedings of the 5th International Conference on Language Resources and Evaluation, pp. 2321–2324 (2006)
Embley, D., David Embley, W.: Toward semantic understanding: an approach based on information extraction ontologies. In: Schewe, K.-D., Williams, H. (eds.) Proceedings of the 15th Australasian Database Conference (ADC 2004), vol. 27, pp. 3–12. Australian Computer Society, Inc., Darlinghurst (2004)
Li, Y., Bontcheva, K.: Hierarchical, perceptron-like learning for ontology-based information extraction. In: Proceedings of the 16th International Conference on World Wide Web (WWW 2007), pp. 777–786. ACM, New York (2007), http://doi.acm.org/10.1145/1242572.1242677 , doi:10.1145/1242572.1242677
Hwang, C.: Incompletely and imprecisely speaking: Using dynamic ontologies for representing and retrieving information. In: Proceedings of the 6th International Workshop on Ontology-Based Information Extraction System, Kaiserslautern, Germany (1999)
Yildiz, B., Miksch, S.: ontoX - A Method for Ontology-Driven Information Extraction. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 660–673. Springer, Heidelberg (2007)
Todirascu, A., Romary, L., Bekhouche, D.: Vulcain - An Ontology-Based Information Extraction System. In: Andersson, B., Bergholtz, M., Johannesson, P. (eds.) NLDB 2002. LNCS, vol. 2553, pp. 64–75. Springer, Heidelberg (2002)
Vargas-Vera, M., Motta, E., Domingu, J., Shum, S., Lanzoni, M.: Knowledge extraction by using an ontology-based annotation tool. In: Proceedings of the workshop on knowledge markup and semantic annotation, USA, ACM Press, New York (2001)
Popov, B., Kiryakov, A., Ognyanoff, D., Monov, D., Kirilov, A.: KIM–a semantic platform for information extraction and retrieval.? Natural Language Engineering 10(3-4), 375–392 (2004)
Adrian, B., Hees, J., van Elst, L., Dengel, A.: iDocument: Using Ontologies for Extracting and Annotating Information from Unstructured Text. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 249–256. Springer, Heidelberg (2009)
Adar, E., Weld, D.S., Bershad, B.N., Gribble, S.D.: Why We Search: Visualizing and Predicting User Behavior. WWW (2007)
Sadilek, A., Kautz, H., Silenzio, V.: Predicting Disease Transmission from Geo-Tagged Micro-Blog Data. AAAI (2012)
Gilbert, E., Karahalios, K.: Widespread Worry and the Stock Market. AAAI (2010)
Berman, J.: Principles of Big Data Preparing. Elsevier / Morgan Kaufmann (2013)
Minelli, M., Chambers, M., Dhiraj, A.: Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today’s Businesses. Wiley (2013)
Finley, K.: Facebook Says Its New Data Center Will Run Entirely on Wind, WIRED (2013), http://www.wired.com/wiredenterprise/2013/11/facebook-iowa-wind/
Greenberg, P.: 10 Reasons 2014 will be the Year of Small Data, ZDNet. (2013), http://www.zdnet.com/10-reasons-2014-will-be-the-year-of-small-data-7000023667/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Nakanishi, T. (2015). A Discovery Method of Anteroposterior Correlation for Big Data Era. In: Lee, R. (eds) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Studies in Computational Intelligence, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-319-10389-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-10389-1_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10388-4
Online ISBN: 978-3-319-10389-1
eBook Packages: EngineeringEngineering (R0)