Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 569))

Abstract

In this paper, we present a new knowledge extraction method on Big data era.We introduce new concepts, anteroposterior correlation, and propose an extraction method of anteroposterior correlation. The anteroposterior correlation means the correlation based on the time anteroposterior relation. We consider that Heterogeneity, continuity, and visualization are the most critical features of Big data analytics, which provides a scale and connection merits based on them. No current data analysis methods are based on opened assumptions. Big data analytics provides a new data analysis method based on opening assumptions. In this paper, we especially focus on an aspect of heterogeneity. We discover a correlation in consideration of the continuity of time. By our method, we effectively discover relationships between heterogeneous things, events and phenomena. The anteroposterior correlations are represented in relative comparison with each conditional probability distribution. The one of the features of our method is a measurement correlation by using conditional probability. That is, we calculate the correlation relative by representing all in conditional probability, no absolutely. Our method is determined higher correlation by comparison to each heterogeneous thing, event and phenomenon. This is the most important points on the Big data era. When you apply current association rule extraction techniques, you obtain too big rule base to organize them. By our method, we realize the one of the methods for decision mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Magazine Communications of the ACM CACM Homepage Archive 18(11), 613–620 (1975)

    MATH  Google Scholar 

  2. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)

    Article  Google Scholar 

  3. Kitagawa, T., Kiyoki, Y.: A mathematical model of meaning and its application to multidatabase systems. In: RIDE-IMS 1993: Proceedings of the 3rd International Workshop on Research Issues in Data Engineering: Interoperability in Multidatabase Systems, pp. 130–135 (1993)

    Google Scholar 

  4. Kiyoki, Y., Kitagawa, T., Hayama, T.: A metadatabase system for semantic image search by a mathematical model of meaning. SIGMOD Rec. 23(4), 34–41 (1994)

    Article  Google Scholar 

  5. Takano, K., Kiyoki, Y.: A superordinate and subordinate relationship computation method and its application to aerospace engineering information. In: ACST 2007: Proceedings of the Third Conference on IASTED International Conference, Anaheim, CA, USA, pp. 510–516 (2007)

    Google Scholar 

  6. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet: An on-line lexical database. Journal of Lexicography 3(4), 235–244 (1990)

    Article  Google Scholar 

  7. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man and Cybernetics 19(1), 17–30 (1989)

    Article  Google Scholar 

  8. Kim, Y., Kim, J.: A model of knowledge based information retrieval with hierarchical concept graph. Journal of Documentation 46(2), 113–136 (1990)

    Article  Google Scholar 

  9. Lee, J., Kim, M., Lee, Y.: Information retrieval based on conceptual distance in is-a hierarchies. Journal of Documentation 49(2), 188–207 (1993)

    Article  Google Scholar 

  10. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: IJCAI: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 448–453 (1995)

    Google Scholar 

  11. Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain structure to compute similarity. ACM Trans. Inf. Syst. 21(1), 64–93 (2003)

    Article  Google Scholar 

  12. Wimalasuriya, D., Dou, D.: Ontology-based information extraction: An introduction and a survey of current approaches. Journal of Information Science 36(3), 306–323 (2010)

    Article  Google Scholar 

  13. Saggion, H., Funk, A., Maynard, D., Bontcheva, K.: Ontology-Based Information Extraction for Business Intelligence. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp. 843–856. Springer, Heidelberg (2007)

    Google Scholar 

  14. Wu, F., Hoffmann, R., Weld, D.S.: Information extraction from Wikipedia: moving down the long tail. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2008), pp. 731–739. ACM, New York (2008), http://doi.acm.org/10.1145/1401890.1401978 , doi:10.1145/1401890.1401978

    Chapter  Google Scholar 

  15. Cimiano, P., Handschuh, S., Staab, S.: Towards the self-annotating web. In: Proceedings of the 13th International Conference on World Wide Web (WWW 2004), pp. 462–471. ACM, New York (2004), http://doi.acm.org/10.1145/988672.988735 , doi:10.1145/988672.988735

    Chapter  Google Scholar 

  16. McDowell, L.K., Cafarella, M.: Ontology-Driven Information Extraction with OntoSyphon. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 428–444. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Maedche, A., Neumann, G., Staab, S.: Bootstrapping an ontology-based information extraction system. In: Szczepaniak, P.S., Segovia, J., Kacprzyk, J., Zadeh, L.A. (eds.) Intelligent Exploration of the Web, pp. 345–359. Physica-Verlag GmbH, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Maedche, A., Staab, S.: The Text-to-Onto Ontology Learning Environment. In: Software Demonstration at the 8th International Comference Conceputual Structures. Springer, Berlin (2000)

    Google Scholar 

  19. Buitelaar, P., Siegel, M.: The Text-to-Onto Ontology Learning Environment. In: Proceedings of the 5th International Conference on Language Resources and Evaluation, pp. 2321–2324 (2006)

    Google Scholar 

  20. Embley, D., David Embley, W.: Toward semantic understanding: an approach based on information extraction ontologies. In: Schewe, K.-D., Williams, H. (eds.) Proceedings of the 15th Australasian Database Conference (ADC 2004), vol. 27, pp. 3–12. Australian Computer Society, Inc., Darlinghurst (2004)

    Google Scholar 

  21. Li, Y., Bontcheva, K.: Hierarchical, perceptron-like learning for ontology-based information extraction. In: Proceedings of the 16th International Conference on World Wide Web (WWW 2007), pp. 777–786. ACM, New York (2007), http://doi.acm.org/10.1145/1242572.1242677 , doi:10.1145/1242572.1242677

    Chapter  Google Scholar 

  22. Hwang, C.: Incompletely and imprecisely speaking: Using dynamic ontologies for representing and retrieving information. In: Proceedings of the 6th International Workshop on Ontology-Based Information Extraction System, Kaiserslautern, Germany (1999)

    Google Scholar 

  23. Yildiz, B., Miksch, S.: ontoX - A Method for Ontology-Driven Information Extraction. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 660–673. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Todirascu, A., Romary, L., Bekhouche, D.: Vulcain - An Ontology-Based Information Extraction System. In: Andersson, B., Bergholtz, M., Johannesson, P. (eds.) NLDB 2002. LNCS, vol. 2553, pp. 64–75. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Vargas-Vera, M., Motta, E., Domingu, J., Shum, S., Lanzoni, M.: Knowledge extraction by using an ontology-based annotation tool. In: Proceedings of the workshop on knowledge markup and semantic annotation, USA, ACM Press, New York (2001)

    Google Scholar 

  26. Popov, B., Kiryakov, A., Ognyanoff, D., Monov, D., Kirilov, A.: KIM–a semantic platform for information extraction and retrieval.? Natural Language Engineering 10(3-4), 375–392 (2004)

    Article  Google Scholar 

  27. Adrian, B., Hees, J., van Elst, L., Dengel, A.: iDocument: Using Ontologies for Extracting and Annotating Information from Unstructured Text. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 249–256. Springer, Heidelberg (2009)

    Google Scholar 

  28. Adar, E., Weld, D.S., Bershad, B.N., Gribble, S.D.: Why We Search: Visualizing and Predicting User Behavior. WWW (2007)

    Google Scholar 

  29. Sadilek, A., Kautz, H., Silenzio, V.: Predicting Disease Transmission from Geo-Tagged Micro-Blog Data. AAAI (2012)

    Google Scholar 

  30. Gilbert, E., Karahalios, K.: Widespread Worry and the Stock Market. AAAI (2010)

    Google Scholar 

  31. Berman, J.: Principles of Big Data Preparing. Elsevier / Morgan Kaufmann (2013)

    Google Scholar 

  32. Minelli, M., Chambers, M., Dhiraj, A.: Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today’s Businesses. Wiley (2013)

    Google Scholar 

  33. Finley, K.: Facebook Says Its New Data Center Will Run Entirely on Wind, WIRED (2013), http://www.wired.com/wiredenterprise/2013/11/facebook-iowa-wind/

  34. Greenberg, P.: 10 Reasons 2014 will be the Year of Small Data, ZDNet. (2013), http://www.zdnet.com/10-reasons-2014-will-be-the-year-of-small-data-7000023667/

  35. http://japan.internet.com/wmnews/20100628/3.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Nakanishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nakanishi, T. (2015). A Discovery Method of Anteroposterior Correlation for Big Data Era. In: Lee, R. (eds) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Studies in Computational Intelligence, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-319-10389-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10389-1_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10388-4

  • Online ISBN: 978-3-319-10389-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics