Abstract
The collection of methods known as ‘data mining’ offers methodological and technical solutions to deal with the analysis of medical data and the construction of models. Medical data have a special status based upon their applicability to all people; their urgency (including life-or death); and a moral obligation to be used for beneficial purposes. Due to this reality, this article addresses the special features of data mining with medical data. Specifically, we will apply a recent data mining algorithm called FuzzyPred. It performs an unsupervised learning process to obtain a set of fuzzy predicates in a normal form, specifically conjunctive (CNF) and disjunctive normal form (DNF). Experimental studies in known medical datasets shows some examples of knowledge that can be obtained by using this method. Several kind of knowledge that was obtained by FuzzyPred in these databases cannot be obtained by other popular data mining techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cios, K.J., William Moore, G.: Uniqueness of medical data mining. Artificial Intelligence in Medicine 26(1), 1–24 (2002)
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD Process for Extracting Useful Knowledge. Communications of the ACM 39, 27–34 (1996)
Bellazzi, R., Diomidous, M., Sarkar, I., Takabayashi, K., Ziegler, A., McCray, A.: Data analysis and data mining: current issues in biomedical informatics. Methods of Information in Medicine 50(6), 536 (2011)
Ceruto, T., Lapeira, O., Rosete, A., Espin, R.: Discovery of fuzzy predicates in database. Advances in Intelligent Systems Research 51, 45–54 (2013) ISSN 1951-6851
Cordovés, T.C., Suárez, A.R., Andrade, R.A.E.: Knowledge Discovery by Fuzzy Predicates. In: Espin, R., Pérez, R.B., Cobo, A., Marx, J., Valdés Olmos, R.A. (eds.) Soft Computing for Business Intelligence. SCI, vol. 537, pp. 187–196. Springer, Heidelberg (2014)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. The Morgan Kaufmann Series in Data Management Systems, pp. 1–14 (2006) ISBN: 978-1-55860-901-3
Berry, M., Linoff, M., Gordon, S.: Data Mining Techniques, pp. 11–40. John Wiley & Sons (2004) ISBN: 0-47L-47b4-3
Muggleton, S., DeRaedt, L.: Inductive Logic Programming: Theory and methods. The Journal of Logic Programming 19(20), 629–679 (1994)
Goldberg, D., Koza, J.: Genetic Programming Theory and Practice V, pp. 1–13. Springer Science+Business Media (2008) ISBN-13: 978-0-387-76307-1
Zadeh, L.: Fuzzy Sets. Information Control 8, 338–353 (1965)
Hong, T., Lee, Y.: An Overview of Mining Fuzzy Association Rules. In: Bustince, H., Herrera, F., Montero, J. (eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. STUDFUZZ, vol. 220, pp. 397–410. Springer, Heidelberg (2008)
Delgado, M., Manín, N., Martín-Bautista, M.: Mining Fuzzy Association Rules: An Overview. In: Nikravesh, M., Zadeh, L.A., Kacprzyk, J. (eds.) Soft Computing for Information Processing and Analysis. STUDFUZZ, vol. 164, pp. 351–373. Springer, Heidelberg (2005)
Apolloni, B., Zamponi, G., Zanaboni, A.M.: Learning fuzzy decision trees. Neural Networks 11, 885–895 (1998)
Setnes, M., Kaymak, U.: Extended fuzzy c-means with volume prototypes and cluster merging. In: Proc. EUFIT 1998, Aachen, Germany, pp. 1360–1364 (1998)
Meschino, G., Espin, R., Ballarin, V.: A framework for tissue discrimination in Magnetic Resonance brain images based on predicates analysis and Compensatory Fuzzy Logic. IC-MED 2(X(1)), 1–16 (2008)
Vanti, A., Andrade, R.: Administración Lógica: Un estudio de caso en una empresa de Comercio Exterior. Revista Base (Administração e Contabilidade) da UNISINOS 2(2), 69–77 (2005)
Delgado, T., Delgado, M.: Evaluación del Índice de Alistamiento de IDEs en Iberoamérica y el Caribe a partir de un modelo de Lógica Difusa-Compensatoria, in Infraestructuras de datos espaciales en Iberoamérica y el Caribe, Casa editorial IDICT, pp. 41–58 (2007) ISBN - 959-234-062-5
Espín, R., Fernandez, E., Mazcorro, G., Lecich, M.: A fuzzy approach to cooperative n-person games. European Journal of Operational Research 176(3), 1735–1751 (2007)
Massone, H., et al.: Evaluación de la peligrosidad de contaminación del agua subterránea mediante lógica difusa. Revista Argentina de Ingeniería (RADI) 2(2) (2013)
Daňková, M.: Representation of logic formulas by normal forms. Kybernetika 38(6), 717–728 (2002)
Perfilieva, I.: Normal forms for fuzzy logic functions in Multiple-Valued Logic. In: Proceedings (IEEE) of 33rd International Symposium (2003)
Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling, Design and Implementation, p. 341. Idea Group Publishing (2006) ISBN 1-59140-325-1
Mitsuishi, T., Endou, N., Shidama, Y.: The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Journal of Formalized Mathematics 9(2), 315–356 (2000) ISSN 1426–2630
Rojas, R.: Fuzzy Logic in Book Neutral Networks: A Systematic Introduction, p. 502. Springer (1996) ISBN 978-3-642-61068-4
Cunningham, D.: A logical introduction to proof, p. 29. Springer, New York (2012) ISBN 9781461436317
Bouchon-Meunier, B., Yao, J.: Linguistic modifiers and imprecise categories. International Journal of Intelligent Systems 7(1), 25–36 (1992)
Espin, R., Fernandez, E., Mazcorro, G., et al.: Compensatory Logic: A fuzzy normative model for decision making. Investigación Operacional 27(2), 178–193 (2006)
Mizumoto, M.: Pictorial Representactions of fuzzyconectives, Part II: cases of Compensatory operators and Self-dual operators. Fuzzy Sets and Systems 32, 45–79 (1989)
Talbi, E.: Metaheuristics: From Design to Implementation, pp. 18–29. John Wiley & Sons (2009) ISBN 978-0-470-27858-1
Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys 35(3), 268–308 (2003)
Wolpert, D., Macready, W.: No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)
Data Mining Group, Welcome to DMG (June 4, 2013) www.dmg.org
Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Wiswedel, B.: KNIME: The Konstanz information miner, pp. 319–326. Springer, Heidelberg (2008)
Xfuzzy Home Page, Fuzzy logic design tools, http://www.imse-cnm.csic.es/Xfuzzy/
Fajardo, J., Suarez, A.: Algoritmo Multigenerador de Soluciones para la competencia y colaboración de generadores metaheurísticos. Revista Internacional de Investigación de Operaciones (RIIO) 1, 57–62 (2010)
SpaceTree (July 12, 2013), http://www.cs.umd.edu/hcil/spacetree/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ceruto, T., Lapeira, O., Tonch, A., Plant, C., Espin, R., Rosete, A. (2014). Mining Medical Data to Obtain Fuzzy Predicates. In: Bursa, M., Khuri, S., Renda, M.E. (eds) Information Technology in Bio- and Medical Informatics. ITBAM 2014. Lecture Notes in Computer Science, vol 8649. Springer, Cham. https://doi.org/10.1007/978-3-319-10265-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-10265-8_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10264-1
Online ISBN: 978-3-319-10265-8
eBook Packages: Computer ScienceComputer Science (R0)