Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mining Medical Data to Obtain Fuzzy Predicates

  • Conference paper
Information Technology in Bio- and Medical Informatics (ITBAM 2014)

Abstract

The collection of methods known as ‘data mining’ offers methodological and technical solutions to deal with the analysis of medical data and the construction of models. Medical data have a special status based upon their applicability to all people; their urgency (including life-or death); and a moral obligation to be used for beneficial purposes. Due to this reality, this article addresses the special features of data mining with medical data. Specifically, we will apply a recent data mining algorithm called FuzzyPred. It performs an unsupervised learning process to obtain a set of fuzzy predicates in a normal form, specifically conjunctive (CNF) and disjunctive normal form (DNF). Experimental studies in known medical datasets shows some examples of knowledge that can be obtained by using this method. Several kind of knowledge that was obtained by FuzzyPred in these databases cannot be obtained by other popular data mining techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cios, K.J., William Moore, G.: Uniqueness of medical data mining. Artificial Intelligence in Medicine 26(1), 1–24 (2002)

    Article  Google Scholar 

  2. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD Process for Extracting Useful Knowledge. Communications of the ACM 39, 27–34 (1996)

    Article  Google Scholar 

  3. Bellazzi, R., Diomidous, M., Sarkar, I., Takabayashi, K., Ziegler, A., McCray, A.: Data analysis and data mining: current issues in biomedical informatics. Methods of Information in Medicine 50(6), 536 (2011)

    Article  Google Scholar 

  4. Ceruto, T., Lapeira, O., Rosete, A., Espin, R.: Discovery of fuzzy predicates in database. Advances in Intelligent Systems Research 51, 45–54 (2013) ISSN 1951-6851

    Google Scholar 

  5. Cordovés, T.C., Suárez, A.R., Andrade, R.A.E.: Knowledge Discovery by Fuzzy Predicates. In: Espin, R., Pérez, R.B., Cobo, A., Marx, J., Valdés Olmos, R.A. (eds.) Soft Computing for Business Intelligence. SCI, vol. 537, pp. 187–196. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. The Morgan Kaufmann Series in Data Management Systems, pp. 1–14 (2006) ISBN: 978-1-55860-901-3

    Google Scholar 

  7. Berry, M., Linoff, M., Gordon, S.: Data Mining Techniques, pp. 11–40. John Wiley & Sons (2004) ISBN: 0-47L-47b4-3

    Google Scholar 

  8. Muggleton, S., DeRaedt, L.: Inductive Logic Programming: Theory and methods. The Journal of Logic Programming 19(20), 629–679 (1994)

    Article  MathSciNet  Google Scholar 

  9. Goldberg, D., Koza, J.: Genetic Programming Theory and Practice V, pp. 1–13. Springer Science+Business Media (2008) ISBN-13: 978-0-387-76307-1

    Google Scholar 

  10. Zadeh, L.: Fuzzy Sets. Information Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hong, T., Lee, Y.: An Overview of Mining Fuzzy Association Rules. In: Bustince, H., Herrera, F., Montero, J. (eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. STUDFUZZ, vol. 220, pp. 397–410. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Delgado, M., Manín, N., Martín-Bautista, M.: Mining Fuzzy Association Rules: An Overview. In: Nikravesh, M., Zadeh, L.A., Kacprzyk, J. (eds.) Soft Computing for Information Processing and Analysis. STUDFUZZ, vol. 164, pp. 351–373. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Apolloni, B., Zamponi, G., Zanaboni, A.M.: Learning fuzzy decision trees. Neural Networks 11, 885–895 (1998)

    Article  Google Scholar 

  14. Setnes, M., Kaymak, U.: Extended fuzzy c-means with volume prototypes and cluster merging. In: Proc. EUFIT 1998, Aachen, Germany, pp. 1360–1364 (1998)

    Google Scholar 

  15. Meschino, G., Espin, R., Ballarin, V.: A framework for tissue discrimination in Magnetic Resonance brain images based on predicates analysis and Compensatory Fuzzy Logic. IC-MED 2(X(1)), 1–16 (2008)

    Google Scholar 

  16. Vanti, A., Andrade, R.: Administración Lógica: Un estudio de caso en una empresa de Comercio Exterior. Revista Base (Administração e Contabilidade) da UNISINOS 2(2), 69–77 (2005)

    Google Scholar 

  17. Delgado, T., Delgado, M.: Evaluación del Índice de Alistamiento de IDEs en Iberoamérica y el Caribe a partir de un modelo de Lógica Difusa-Compensatoria, in Infraestructuras de datos espaciales en Iberoamérica y el Caribe, Casa editorial IDICT, pp. 41–58 (2007) ISBN - 959-234-062-5

    Google Scholar 

  18. Espín, R., Fernandez, E., Mazcorro, G., Lecich, M.: A fuzzy approach to cooperative n-person games. European Journal of Operational Research 176(3), 1735–1751 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Massone, H., et al.: Evaluación de la peligrosidad de contaminación del agua subterránea mediante lógica difusa. Revista Argentina de Ingeniería (RADI) 2(2) (2013)

    Google Scholar 

  20. Daňková, M.: Representation of logic formulas by normal forms. Kybernetika 38(6), 717–728 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Perfilieva, I.: Normal forms for fuzzy logic functions in Multiple-Valued Logic. In: Proceedings (IEEE) of 33rd International Symposium (2003)

    Google Scholar 

  22. Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling, Design and Implementation, p. 341. Idea Group Publishing (2006) ISBN 1-59140-325-1

    Google Scholar 

  23. Mitsuishi, T., Endou, N., Shidama, Y.: The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Journal of Formalized Mathematics 9(2), 315–356 (2000) ISSN 1426–2630

    Google Scholar 

  24. Rojas, R.: Fuzzy Logic in Book Neutral Networks: A Systematic Introduction, p. 502. Springer (1996) ISBN 978-3-642-61068-4

    Google Scholar 

  25. Cunningham, D.: A logical introduction to proof, p. 29. Springer, New York (2012) ISBN 9781461436317

    Google Scholar 

  26. Bouchon-Meunier, B., Yao, J.: Linguistic modifiers and imprecise categories. International Journal of Intelligent Systems 7(1), 25–36 (1992)

    Article  MATH  Google Scholar 

  27. Espin, R., Fernandez, E., Mazcorro, G., et al.: Compensatory Logic: A fuzzy normative model for decision making. Investigación Operacional 27(2), 178–193 (2006)

    Google Scholar 

  28. Mizumoto, M.: Pictorial Representactions of fuzzyconectives, Part II: cases of Compensatory operators and Self-dual operators. Fuzzy Sets and Systems 32, 45–79 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Talbi, E.: Metaheuristics: From Design to Implementation, pp. 18–29. John Wiley & Sons (2009) ISBN 978-0-470-27858-1

    Google Scholar 

  30. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys 35(3), 268–308 (2003)

    Article  Google Scholar 

  31. Wolpert, D., Macready, W.: No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)

    Article  Google Scholar 

  32. Data Mining Group, Welcome to DMG (June 4, 2013) www.dmg.org

  33. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Wiswedel, B.: KNIME: The Konstanz information miner, pp. 319–326. Springer, Heidelberg (2008)

    Google Scholar 

  34. Xfuzzy Home Page, Fuzzy logic design tools, http://www.imse-cnm.csic.es/Xfuzzy/

  35. Fajardo, J., Suarez, A.: Algoritmo Multigenerador de Soluciones para la competencia y colaboración de generadores metaheurísticos. Revista Internacional de Investigación de Operaciones (RIIO) 1, 57–62 (2010)

    Google Scholar 

  36. SpaceTree (July 12, 2013), http://www.cs.umd.edu/hcil/spacetree/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ceruto, T., Lapeira, O., Tonch, A., Plant, C., Espin, R., Rosete, A. (2014). Mining Medical Data to Obtain Fuzzy Predicates. In: Bursa, M., Khuri, S., Renda, M.E. (eds) Information Technology in Bio- and Medical Informatics. ITBAM 2014. Lecture Notes in Computer Science, vol 8649. Springer, Cham. https://doi.org/10.1007/978-3-319-10265-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10265-8_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10264-1

  • Online ISBN: 978-3-319-10265-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics