Abstract
This chapter is concerned with the perception and simulation of self-motion in virtual environments, and how spatial presence and other higher cognitive and top-down factors can contribute to improve the illusion of self-motion (“vection”) in virtual reality (VR). In the real world, we are used to being able to move around freely and interact with our environment in a natural and effortless manner. Current VR technology does, however, hardly allow for natural, life-like interaction between the user and the virtual environment. One crucial shortcoming is the insufficient and often unconvincing simulation of self-motion, which frequently causes disorientation, unease, and motion sickness. The specific focus of this chapter is the investigation of potential relations between higher-level factors like presence on the one hand and self-motion perception in VR on the other hand. Even though both presence and self-motion illusions have been extensively studied in the past, the question whether/how they might be linked to one another has received relatively little attention by researchers so far. After reviewing relevant literature on vection and presence, we present data from two experiments, which explicitly investigated potential relations between vection and presence and indicate that there might indeed be a direct link between these two phenomena. We discuss theoretical and practical implications from these findings and conclude by sketching a tentative theoretical framework that discusses how a broadened view that incorporates both presence and vection research might lead to a better understanding of both phenomena, and might ultimately be employed to improve not only the perceptual effectiveness of a given VR simulation, but also its behavioural and goal/application-specific effectiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Sections <InternalRef RefID="Sec5" >9.2</Internal Ref>, <InternalRef RefID="Sec30" >9.6</Internal Ref> and <InternalRef RefID="Sec31" >9.7</Internal Ref> of this chapter are, in part, based on (Riecke and Schulte-Pelkum <CitationRef CitationID="CR107" >2013</Citation Ref>), with kind permission from Springer Science + Business Media: Riecke BE, Schulte-Pelkum J (2013) Perceptual and Cognitive Factors for Self-Motion Simulation in Virtual Environments: How Can Self-Motion Illusions (“Vection”) Be Utilized? In: Steinicke F, Visell Y, Campos J, Lécuyer A (eds) Human Walking in Virtual Environments. Springer, New York, pp 27–54, © Springer Science + Business Media New York 2013.
- 2.
This section presents a re-analysis of the most relevant experimental conditions from Riecke et al. (<CitationRef CitationID="CR115" >2006a</Citation Ref>) (experiment 1) and is in part based on that paper, with an additional discussion in the context of presence and experiment 2 and the framework presented in this chapter.
References
Andersen, G. J. (1986). Perception of self-motion – Psychophysical and computational approaches. Psychological Bulletin, 99(1), 52–65.
Andersen, G. J., & Braunstein, M. L. (1985). Induced self-motion in central vision. Journal of Experimental Psychology: Human Perception and Performance, 11(2), 122–132.
Ash, A., Palmisano, S., Govan, D. G., & Kim, J. (2011a). Display lag and gain effects on vection experienced by active observers. Aviation, Space and Environmental Medicine, 82(8), 763–769. doi:10.3357/ASEM.3026.2011.
Ash, A., Palmisano, S., & Kim, J. (2011b). Vection in depth during consistent and inconsistent multisensory stimulation. Perception, 40(2), 155–174. doi:10.1068/p6837.
Ash, A., Palmisano, S., & Allison, R. (2012). Vection in depth during treadmill locomotion. Journal of Vision, 12(9), 181. doi:10.1167/12.9.181.
Ash, A., Palmisano, S., Apthorp, D., & Allison, R. S. (2013). Vection in depth during treadmill walking. Perception, 42(5), 562–576. doi:10.1068/p7449.
Avraamides, M. N., & Kelly, J. W. (2008). Multiple systems of spatial memory and action. Cognitive Processing, 9, 93–106. doi:10.1007/s10339-007-0188-5.
Avraamides, M. N., Klatzky, R. L., Loomis, J. M., & Golledge, R. G. (2004). Use of cognitive versus perceptual heading during imagined locomotion depends on the response mode. Psychological Science, 15(6), 403–408. doi:10.1111/j.0956-7976.2004.00692.x.
Bailenson, J. N., Guadagno, R. E., Aharoni, E., Dimov, A., Beall, A. C., & Blascovich, J. (2004). Comparing behavioral and self-report measures of embodied agents: Social presence in immersive virtual environments. Paper presented at. Proceedings of the 7th annual international workshop on PRESENCE. Barcelona, Spain.
Bakker, N. H., Werkhoven, P. J., & Passenier, P. O. (1999). The effects of proprioceptive and visual feedback on geographical orientation in virtual environments. Presence: Teleoperators and Virtual Environments, 8(1), 36–53.
Bakker, N. H., Werkhoven, P. J., & Passenier, P. O. (2001). Calibrating visual path integration in VEs. Presence: Teleoperators and Virtual Environments, 10(2), 216–224.
Becker, W., Nasios, G., Raab, S., & Jürgens, R. (2002). Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets. Experimental Brain Research, 144(4), 458–474.
Berger, D. R., Schulte-Pelkum, J., & Bülthoff, H. H. (2010). Simulating believable forward accelerations on a stewart motion platform. ACM Transactions on Applied Perception, 7(1), 1–27. doi:10.1145/1658349.1658354.
Berthoz, A., & Droulez, J. (1982). Linear self motion perception. In A. H. Wertheim, W. A. Wagenaar, & H. W. Leibowitz (Eds.), Tutorials on motion perception (pp. 157–199). New York: Plenum.
Berthoz, A., Pavard, B., & Young, L. R. (1975). Perception of linear horizontal self-motion induced by peripheral vision (linearvection) – basic characteristics and visual-vestibular interactions. Experimental Brain Research, 23(5), 471–489.
Biocca, F. (1997). The cyborg’s dilemma: Progressive embodiment in virtual environments. Journal of Computer-Mediated Communication, 3(2).
Bles, W. (1981). Stepping around: Circular vection and Coriolis effects. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 47–61). Hillsdale: Erlbaum.
Bles, W., & Kapteyn, T. S. (1977). Circular vection and human posture: 1. Does proprioceptive system play a role? Agressologie, 18(6), 325–328.
Bles, W., Bos, J. E., de Graaf, B., Groen, E., & Wertheim, A. H. (1998). Motion sickness: Only one provocative conflict? Brain Research Bulletin, 47(5), 481–487.
Boer, E. R., Girshik, A. R., Yamamura, T., & Kuge, N. (2000). Experiencing the same road twice: A driver-centred comparison between simulation and reality. Proceedings of the Driving Simulation conference 2000, Paris.
Bouchard, S., Dumoulin, S., Talbot, J., Ledoux, A.-A., Phillips, J., Monthuy-Blanc, J., Labonté-Chartrand, G., et al. (2012). Manipulating subjective realism and its impact on presence: Preliminary results on feasibility and neuroanatomical correlates. Interacting with Computers, 24(4), 227–236. doi:10.1016/j.intcom.2012.04.011.
Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research, 16, 476–491.
Burki-Cohen, J., Go, T. H., Chung, W. Y., Schroeder, J., Jacobs, S., & Longridge, T. (2003, April 14–17). Simulator fidelity requirements for airline pilot training and evaluation continued: An update on motion requirements research. Proceedings of the 12th international symposium on Aviation Psychology (pp. 182–189). Dayton.
Chance, S. S., Gaunet, F., Beall, A. C., & Loomis, J. M. (1998). Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence: Teleoperators and Virtual Environments, 7(2), 168–178.
Cheung, B. S. K., Howard, I. P., Nedzelski, J. M., & Landolt, J. P. (1989). Circularvection about earth-horizontal axes in bilateral labyrinthine-defective subjects. Acta Oto-Laryngologica, 108(5), 336. doi:10.3109/00016488909125537.
Conrad, B., Schmidt, S., & Douvillier, J. (1973). Washout circuit design for multi-degrees-of-freedom moving base simulators. Visual and Motion Simulation Conference. AIAA paper 1973–929.
Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., & Thompson, W. B. (2005). The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual indoor environments. Perception, 34(2), 191–204. doi:10.1068/p5144.
Dichgans, J., & Brandt, T. (1978). Visual-vestibular interaction: Effects on self-motion perception and postural control. In R. Held, H. W. Leibowitz, & H.-L. Teuber (Eds.), Perception, handbook of sensory physiology (Vol. VIII, pp. 756–804). Berlin/Heidelberg: Springer.
Diener, H. C., Wist, E. R., Dichgans, J., & Brandt, T. (1976). The spatial frequency effect on perceived velocity. Vision Research, 16(2), 169–176. doi:10.1016/0042-6989(76)90094-8. IN4–IN7.
Distler, H. K. (2003). Wahrnehmung in Virtuellen Welten (PhD thesis). Giessen: Justus-Liebig-Universität.
Dodge, R. (1923). Thresholds of rotation. Journal of Experimental Psychology, 6(2), 107–137. doi:10.1037/h0076105.
Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162–169.
Feuereissen, D. (2013, August). Self-motion illusions (vection) in virtual environments: Do active control and user-generated motion cueing enhance visually induced vection? (MSc thesis). Surrey: Simon Fraser University. Retrieved from https://theses.lib.sfu.ca/thesis/etd7976
Freeman, J., Avons, S. E., Meddis, R., Pearson, D. E., & IJsselsteijn, W. I. (2000). Using behavioral realism to estimate presence: A study of the utility of postural responses to motion stimuli. Presence: Teleoperators and Virtual Environments, 9(2), 149–164.
Giannopulu, I., & Lepecq, J. C. (1998). Linear-vection chronometry along spinal and sagittal axes in erect man. Perception, 27(3), 363–372.
Grant, P. R., & Reid, L. D. (1997). Motion washout filter tuning: Rules and requirements. Journal of Aircraft, 34(2), 145–151. doi:10.2514/2.2158.
Grechkin, T. Y., Nguyen, T. D., Plumert, J. M., Cremer, J. F., & Kearney, J. K. (2010). How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Transactions on Applied Perception, 7(4), 26:1–26:18. doi:10.1145/1823738.1823744
Guedry, F. E., Rupert, A. R., & Reschke, M. F. (1998). Motion sickness and development of synergy within the spatial orientation system. A hypothetical unifying concept. Brain Research Bulletin, 47(5), 475–480.
Haans, A., & IJsselsteijn, W. A. (2012). Embodiment and telepresence: Toward a comprehensive theoretical framework. Interacting with Computers, 24(4), 211–218. doi:10.1016/j.intcom.2012.04.010.
Hale, K. S., & Stanney, K. M. (2014). Handbook of virtual environments: Design, implementation, and applications (2nd ed.). Boca Raton: CRC Press.
Hartmann, T., Wirth, W., Vorderer, P., Klimmt, C., Schramm, H., & Böking, S. (2014). Spatial presence theory: State of the art and challenges ahead. In F. Biocca, J. Freeman, W. IJsselsteijn, M. Lombard, & R. J. Schaevitz (Eds.), Immersed in media: Telepresence theory, measurement and technology. New York: Springer.
Hennebert, P. E. (1960). Audiokinetic Nystagmus. Journal of Auditory Research, 1(1), 84–87.
Hettinger, L. J., Schmidt, T., Jones, D. L., & Keshavarz, B. (2014). Illusory self-motion in virtual environments. In K. S. Hale & K. M. Stanney (Eds.), Handbook of virtual environments, human factors and ergonomics (pp. 435–466). Boca Raton: CRC Press.
Hoffman, H. G., Richards, T., Coda, B., Richards, A., & Sharar, S. R. (2003). The illusion of presence in immersive virtual reality during an fMRI brain scan. CyberPsychology & Behavior, 6(2), 127–131. doi:10.1089/109493103321640310.
Howard, I. P. (1982). Human visual orientation. Chichester/New York: Wiley.
Howard, I. P. (1986). The perception of posture, self motion, and the visual vertical. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Sensory processes and perception (Handbook of human perception and performance, Vol. 1, pp. 18.1–18.62). New York: Wiley.
Howard, I. P., & Heckmann, T. (1989). Circular vection as a function of the relative sizes, distances, and positions of two competing visual displays. Perception, 18(5), 657–665. doi:10.1068/p180657.
Howard, I. P., & Howard, A. (1994). Vection – The contributions of absolute and relative visual motion. Perception, 23(7), 745–751.
IJsselsteijn, W. A. (2004). Presence in depth. Netherlands: Technische Universiteit Eindhoven, Eindhoven.
IJsselsteijn, W., de Ridder, H., Freeman, J., Avons, S. E., & Bouwhuis, D. (2001). Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence: Teleoperators and Virtual Environments, 10(3), 298–311.
Ito, H., & Shibata, I. (2005). Self-motion perception from expanding and contracting optical flows overlapped with binocular disparity. Vision Research, 45(4), 397–402. doi:10.1016/j.visres.2004.11.009.
Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., & Walton, A. (2008). Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies, 66(9), 641–661. doi:10.1016/j.ijhcs.2008.04.004.
Johansson, G. (1977). Studies on visual-perception of locomotion. Perception, 6(4), 365–376. doi:10.1068/p060365.
Johnson, W. H., Sunahara, F. A., & Landolt, J. P. (1999). Importance of the vestibular system in visually induced nausea and self-vection. Journal of Vestibular Research: Equilibrium & Orientation, 9(2), 83–87.
Kano, C. (1991). The perception of self-motion induced by peripheral visual information in sitting and supine postures. Ecological Psychology, 3(3), 241–252. doi:10.1207/s15326969eco0303_3.
Kearns, M. J., Warren, W. H., Duchon, A. P., & Tarr, M. J. (2002). Path integration from optic flow and body senses in a homing task. Perception, 31(3), 349–374.
Kemeny, A., & Panerai, F. (2003). Evaluating perception in driving simulation experiments. Trends in Cognitive Sciences, 7(1), 31–37.
Kennedy, R. S., Drexler, J., & Kennedy, R. C. (2010). Research in visually induced motion sickness. Applied Ergonomics, 41(4), 494–503. doi:10.1016/j.apergo.2009.11.006.
Keshavarz, B., Hettinger, L. J., Vena, D., & Campos, J. L. (2013). Combined effects of auditory and visual cues on the perception of vection. Experimental Brain Research. doi:10.1007/s00221-013-3793-9.
Kitazaki, M., & Sato, T. (2003). Attentional modulation of self-motion perception. Perception, 32(4), 475–484. doi:10.1068/p5037.
Kitazaki, M., Onimaru, S., & Sato, T. (2010). Vection and action are incompatible (pp. 22–23). Presented at the 2nd IEEE VR 2010 workshop on Perveptual Illusions in Virtual Environments (PIVE), Waltham.
Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., & Golledge, R. G. (1998). Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychological Science, 9(4), 293–298. doi:10.1111/1467-9280.00058.
Knapp, J. M., & Loomis, J. M. (2004). Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence, 13(5), 572–577.
Lackner, J. R. (1977). Induction of illusory self-rotation and nystagmus by a rotating sound-field. Aviation, Space and Environmental Medicine, 48(2), 129–131.
Larsson, P., Västfjäll, D., & Kleiner, M. (2004). Perception of self-motion and presence in auditory virtual environments. Proceedings of 7th annual workshop of Presence (pp. 252–258). Valencia.
Lawson, B. D., & Riecke, B. E. (2014). The perception of body motion. In K. S. Hale & K. M. Stanney (Eds.), Handbook of virtual environments: Design, implementation, and applications (2nd ed., pp. 163–195). Boca Raton: CRC Press.
Lawson, B. D., Graeber, D. A., Mead, A. M., & Muth, E. R. (2002). Signs and symptoms of human syndromes associated with synthetic experiences. In K. M. Stanney (Ed.), Handbook of virtual environments (pp. 589–618). Mahwah: Lawrence Erlbaum.
Lee, K. M. (2004). Presence, explicated. Communication Theory, 14(1), 27–50. doi:10.1111/j.1468-2885.2004.tb00302.x.
Lepecq, J. C., Jouen, F., & Dubon, D. (1993). The effect of linear vection on manual aiming at memorized directions of stationary targets. Perception, 22(1), 49–60.
Lepecq, J. C., Giannopulu, I., & Baudonniere, P. M. (1995). Cognitive effects on visually induced body motion in children. Perception, 24(4), 435–449.
Loomis, J. M. (1992). Distal attribution and presence. Presence: Teleoperators and Virtual Environments, 1(1), 113–119.
Loomis, J. M., da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 906–921.
Loomis, J. M., Da Silva, J. A., Philbeck, J. W., & Fukusima, S. S. (1996). Visual perception of location and distance. Current Directions in Psychological Science, 5(3), 72–77.
Lowther, K., & Ware, C. (1996). Vection with large screen 3D imagery. In ACM CHI ’96 (pp. 233–234). New York: ACM.
Mach, E. (1875). Grundlinien der Lehre von der Bewegungsempfindung. Leipzig: Engelmann.
Marme-Karelse, A. M., & Bles, W. (1977). Circular vection and human posture, II. Does the auditory system play a role? Agressologie, 18(6), 329–333.
May, M. (1996). Cognitive and embodied modes of spatial imagery. Psychologische Beiträge, 38(3/4), 418–434.
May, M. (2004). Imaginal perspective switches in remembered environments: Transformation versus interference accounts. Cognitive Psychology, 48(2), 163–206.
Meehan, M., Insko, B., Whitton, M., & Brooks, F. P. (2002). Physiological measures of presence in stressful virtual environments. In Proceedings of the 29th annual conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’02, pp. 645–652). New York: ACM. doi:10.1145/566570.566630.
Mergner, T., & Becker, W. (1990). Perception of horizontal self-rotation: Multisensory and cognitive aspects. In R. Warren & A. H. Wertheim (Eds.), Perception & control of self-motion (pp. 219–263). Hillsdale/London: Erlbaum.
Mohler, B. J., Thompson, W. B., Riecke, B., & Bülthoff, H. H. (2005). Measuring vection in a large screen virtual environment. In Proceedings of the 2nd symposium on applied perception in graphics and visualization (APGV ’05, pp. 103–109). New York: ACM. http://doi.acm.org/10.1145/1080402.1080421.
Mulder, M., van Paassen, M. M., & Boer, E. R. (2004). Exploring the roles of information in the control of vehicular locomotion – From kinematics and dynamics to cybernetics. Presence: Teleoperators and Virtual Environments, 13, 535–548.
Nakamura, S. (2006). Effects of depth, eccentricity and size of additional static stimulus on visually induced self-motion perception. Vision Research, 46(15), 2344–2353. doi:10.1016/j.visres.2006.01.016.
Nakamura, S. (2008). Effects of stimulus eccentricity on vection reevaluated with a binocularly defined depth. Japanese Psychological Research, 50(2), 77–86. doi:10.1111/j.1468-5884.2008.00363.x.
Nakamura, S., & Shimojo, S. (1999). Critical role of foreground stimuli in perceiving visually induced self-motion (vection). Perception, 28(7), 893–902.
Nash, E. B., Edwards, G. W., Thompson, J. A., & Barfield, W. (2000). A review of presence and performance in virtual environments. International Journal of Human-Computer Interaction, 12(1), 1–41. doi:10.1207/S15327590IJHC1201_1.
Nunez, D. (2003). A connectionist explanation of presence in virtual environments (Master’s thesis). South Africa: University of Cape Town. Retrieved from http://www.cs.uct.ac.za/~dnunez/dnunez_thesis.pdf
Nunez, D., & Blake, E. (2003). Conceptual priming as a determinant of presence in virtual environments. In AFRIGRAPH ’03 Proceedings of the 2nd international conference on computer graphics, virtual reality, visualisation and interaction in Africa (pp. 101–108). New York: ACM Press. doi:10.1145/602330.602350.
Ohmi, M., Howard, I. P., & Landolt, J. P. (1987). Circular vection as a function of foreground-background relationships. Perception, 16(1), 17–22.
Onimaru, S., Sato, T., & Kitazaki, M. (2010). Veridical walking inhibits vection perception. Journal of Vision, 10(7), 860. doi:10.1167/10.7.860.
Palmisano, S. (1996). Perceiving self-motion in depth: The role of stereoscopic motion and changing-size cues. Perception & Psychophysics, 58(8), 1168–1176.
Palmisano, S. (2002). Consistent stereoscopic information increases the perceived speed of vection in depth. Perception, 31(4), 463–480. doi:10.1068/p3321.
Palmisano, S., & Chan, A. Y. C. (2004). Jitter and size effects on vection are immune to experimental instructions and demands. Perception, 33(8), 987–1000.
Palmisano, S., & Gillam, B. (1998). Stimulus eccentricity and spatial frequency interact to determine circular vection. Perception, 27(9), 1067–1077.
Palmisano, S., & Kim, J. (2009). Effects of gaze on vection from jittering, oscillating, and purely radial optic flow. Attention, Perception, & Psychophysics, 71(8), 1842–1853. doi:10.3758/APP.71.8.1842.
Palmisano, S., Gillam, B. J., & Blackburn, S. G. (2000). Global-perspective jitter improves vection in central vision. Perception, 29(1), 57–67.
Palmisano, S., Allison, R. S., Kim, J., & Bonato, F. (2011). Simulated viewpoint jitter shakes sensory conflict accounts of vection. Seeing and Perceiving, 24(2), 173–200. doi:10.1163/187847511X570817.
Palmisano, S., Apthorp, D., Seno, T., & Stapley, P. J. (2014). Spontaneous postural sway predicts the strength of smooth vection. Experimental Brain Research, 232(4), 1185–1191. doi:10.1007/s00221-014-3835-y.
Plumert, J. M., Kearney, J. K., & Cremer, J. F. (2004). Distance perception in real and virtual environments. In ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV) (pp. 27–34). New York: ACM.
Prothero, J. D. (1998). The role of rest frames in vection, presence and motion sickness (PhD thesis). University of Washington. Retrieved from ftp://ftp.hitl.washington.edu/pub/publications/r-98-11/temp/r-98-11.pdf
Prothero, J. D., & Parker, D. E. (2003). A unified approach to presence and motion sickness. In L. J. Hettinger & M. W. Haas (Eds.), Virtual and adaptive environments: Applications, implications, and human performance issues (pp. 47–66). Mahwah, NJ, USA: Lawrence Erlbaum.
Riecke, B. E. (2003). How far can we get with just visual information? Path integration and spatial updating studies in virtual reality (MPI series in biological cybernetics, Vol. 8). Berlin: Logos. Retrieved from http://www.logos-verlag.de/cgi-bin/buch/isbn/0440.
Riecke, B. E. (2006). Simple user-generated motion cueing can enhance self-motion perception (Vection) in virtual reality. In Proceedings of the ACM symposium on Virtual Reality Software and Technology (VRST) (pp. 104–107). Limassol: ACM. doi:10.1145/1180495.1180517.
Riecke, B. E. (2009). Cognitive and higher-level contributions to illusory self-motion perception (“vection”): Does the possibility of actual motion affect vection? Japanese Journal of Psychonomic Science, 28(1), 135–139.
Riecke, B. E. (2011). Compelling self-motion through virtual environments without actual self-motion – using self-motion illusions (“vection”) to improve user experience in VR. In J.-J. Kim (Ed.), Virtual reality (pp. 149–176). InTech. doi:10.5772/13150. Retrieved from http://www.intechopen.com/articles/show/title/compelling-self-motion-through-virtual-environments-without-actual-self-motion-using-self-motion-ill
Riecke, B. E. (2012). Are left-right hemisphere errors in point-to-origin tasks in VR caused by failure to incorporate heading changes? In C. Stachniss, K. Schill, & D. Uttal, (Eds.) Lecture Notes in Computer Science (Vo. 7463, pp. 143–162). Berlin/Heidelberg: Springer.
Riecke, B. E., & Feuereissen, D. (2012). To move or not to move: Can active control and user-driven motion cueing enhance self-motion perception (“vection”) in virtual reality? In ACM symposium on applied perception SAP (pp. 17–24). Los Angeles: ACM. doi:10.1145/2338676.2338680.
Riecke, B. E., & McNamara, T. P. (submitted). Where you are affects what you can easily imagine: Environmental geometry elicits sensorimotor interference in remote perspective taking. Cognition.
Riecke, B. E., & Schulte-Pelkum, J. (2006). Using the perceptually oriented approach to optimize spatial presence & ego-motion simulation (No. 153). MPI for Biological Cybernetics. Retrieved from http://www.kyb.mpg.de/publication.html?publ=4186
Riecke, B. E., & Schulte-Pelkum, J. (2013). Perceptual and cognitive factors for self-motion simulation in virtual environments: How can self-motion illusions (“vection”) be utilized? In F. Steinicke, Y. Visell, J. Campos, & A. Lécuyer (Eds.), Human walking in virtual environments (pp. 27–54). New York: Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4419-8432-6_2.
Riecke, B. E., van Veen, H. A. H. C., & Bülthoff, H. H. (2002). Visual homing is possible without landmarks: A path integration study in virtual reality. Presence: Teleoperators and Virtual Environments, 11, 443–473. doi:10.1162/105474602320935810.
Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., & Bülthoff, H. H. (2004). Enhancing the visually induced self-motion illusion (vection) under natural viewing conditions in virtual reality. Proceedings of 7th annual workshop presence 2004 (pp. 125–132). doi:10.1.1.122.5636.
Riecke, B. E., Heyde, M. V. D., & Bülthoff, H. H. (2005a). Visual cues can be sufficient for triggering automatic, reflexlike spatial updating. ACM Transactions on Applied Perception (TAP), 2, 183–215. doi:http://doi.acm.org/10.1145/1077399.1077401
Riecke, B. E., Schulte-Pelkum, J., & Bülthoff, H. H. (2005b). Perceiving simulated ego-motions in virtual reality – Comparing large screen displays with HMDs. Proceedings of the SPIE (Vol. 5666, pp. 344–355). San Jose. doi:10.1117/12.610846.
Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005c). Towards lean and elegant self-motion simulation in virtual reality. Proceedings of the 2005 IEEE Conference 2005 on Virtual Reality, VR ’05 (pp. 131–138). doi:10.1109/VR.2005.83
Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005d). Influence of auditory cues on the visually-induced self-motion illusion (circular vection) in virtual reality. Proceedings of 8th Annual Workshop Presence 2005 (pp. 49–57). Retrieved from http://en.scientificcommons.org/20596230
Riecke, B. E., Västfjäll, D., Larsson, P., & Schulte-Pelkum, J. (2005e). Top-down and multi-modal influences on self-motion perception in virtual reality. Proceedings of HCI international 2005 (pp. 1–10). Las Vegas. Retrieved from http://en.scientificcommons.org/20596227
Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., Heyde, M. V. D., & Bülthoff, H. H. (2006a). Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Transactions on Applied Perception (TAP), 3(3), 194–216. doi:10.1145/1166087.1166091.
Riecke, B. E., Schulte-Pelkum, J., & Caniard, F. (2006b). Visually induced linear vection is enhanced by small physical accelerations. 7th International Multisensory Research Forum (IMRF). Dublin.
Riecke, B. E., Cunningham, D. W., & Bülthoff, H. H. (2007). Spatial updating in virtual reality: The sufficiency of visual information. Psychological Research, 71(3), 298–313. doi:http://dx.doi.org/10.1007/s00426-006-0085-z.
Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2009a). Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Transactions on Applied Perception, 6(3), 1–22. doi:10.1145/1577755.1577763.
Riecke, B. E., Väljamäe, A., & Schulte-Pelkum, J. (2009b). Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Transactions on Applied Perception (TAP), 6, 7:1–7:27. doi:http://doi.acm.org/10.1145/1498700.1498701
Riecke, B., Bodenheimer, B., McNamara, T., Williams, B., Peng, P., & Feuereissen, D. (2010). Do We need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In C. Hölscher, T. Shipley, M. Olivetti Belardinelli, J. Bateman, & N. Newcombe (Eds.), Spatial cognition VII, lecture notes in computer science (Vol. 6222, pp. 234–247). Berlin/Heidelberg: Springer. Retrieved from doi: 10.1007/978-3-642-14749-4_21.
Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2011). Spatialized sound enhances biomechanically-induced self-motion illusion (vection). In Proceedings of the 2011 annual conference on human factors in computing systems, CHI ’11 (pp. 2799–2802). Presented at the ACM SIG.CHI, Vancouver. doi:10.1145/1978942.1979356
Rieser, J. J., Ashmead, D. H., Talor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19(5), 675–689.
Ruddle, R. A. (2013). The effect of translational and rotational body-based information on navigation. In F. Steinicke, Y. Visell, J. Campos, & A. Lécuyer (Eds.), Human walking in virtual environments (pp. 99–112). New York: Springer. Retrieved from http://link.springer.com.proxy.lib.sfu.ca/chapter/10.1007/978-1-4419-8432-6_5.
Ruddle, R. A., & Lessels, S. (2006). For efficient navigational search, humans require full physical movement, but not a rich visual scene. Psychological Science, 17(6), 460–465. doi:10.1111/j.1467-9280.2006.01728.x.
Ruddle, R. A., & Peruch, P. (2004). Effects of proprioceptive feedback and environmental characteristics on spatial learning in virtual environments. International Journal Of Human-Computer Studies, 60(3), 299–326.
Sadowski, W., & Stanney, K. (2002). Presence in virtual environments. In K. M. Stanney (Ed.), Handbook of virtual environments (pp. 791–806). Mahwah: Lawrence Erlbaum.
Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The experience of presence: Factor analytic insights. Presence: Teleoperators and Virtual Environments, 10(3), 266–281.
Schulte-Pelkum, J. (2007). Perception of self-motion: Vection experiments in multi-sensory Virtual Environments (PhD thesis). Ruhr-Universität Bochum. Retrieved from http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/SchultePelkumJoerg/
Schulte-Pelkum, J., Riecke, B. E., von der Heyde, M., & Bülthoff, H. H. (2003). Circular vection is facilitated by a consistent photorealistic scene. Talk presented at the Presence 2003 conference, Aalborg.
Schultze, U. (2010). Embodiment and presence in virtual worlds: A review. Journal of Information Technology, 25(4), 434. doi:10.1057/jit.2010.25.
Seno, T., Ito, H., & Sunaga, S. (2009). The object and background hypothesis for vection. Vision Research, 49(24), 2973–2982. doi:10.1016/j.visres.2009.09.017.
Seno, T., Ito, H., & Sunaga, S. (2011a). Attentional load inhibits vection. Attention, Perception, & Psychophysics, 73(5), 1467–1476. doi:10.3758/s13414-011-0129-3.
Seno, T., Ogawa, M., Ito, H., & Sunaga, S. (2011b). Consistent air flow to the face facilitates vection. Perception, 40(10), 1237–1240.
Seno, T., Palmisano, S., Ito, H., & Sunaga, S. (2012). Vection can be induced without global-motion awareness. Perception, 41(4), 493–497. doi:10.1068/p7206.
Slater, M. (1999). Measuring presence: A response to the Witmer and Singer presence questionnaire. Presence: Teleoperators and Virtual Environments, 8(5), 560–565. doi:10.1162/105474699566477.
Slater, M. (2004). How colorful was your day? Why questionnaires cannot assess presence in virtual environments. Presence: Teleoperators and Virtual Environments, 13(4), 484–493.
Slater, M., & Garau, M. (2007). The Use of questionnaire data in presence studies: Do not seriously likert. Presence: Teleoperators and Virtual Environments, 16(4), 447–456. doi:10.1162/pres.16.4.447.
Slater, M., & Steed, A. (2000). A virtual presence counter. Presence: Teleoperators and Virtual Environments, 9(5), 413–434. doi:10.1162/105474600566925.
Slater, M., Steed, A., McCarthy, J., & Maringelli, F. (1998). The influence of body movement on subjective presence in virtual environments. Human Factors, 40(3), 469–477.
Steuer, J. S. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 73–93. doi:10.1111/j.1460-2466.1992.tb00812.x.
Stroosma, O., (René) van Paassen, M. M., & Mulder, M. (2003). Using the SIMONA research simulator for human-machine interaction research. AIAA Modeling and Simulation Technologies Conference and Exhibit. American Institute of Aeronautics and Astronautics. Retrieved from http://arc.aiaa.org/doi/abs/10.2514/6.2003-5525
Tan, D. S., Gergle, D., Scupelli, P., & Pausch, R. (2006). Physically large displays improve performance on spatial tasks. ACM Transactions on Computer-Human Interaction, 13(1), 71–99. doi:http://doi.acm.org/10.1145/1143518.1143521
Telban, R. J., & Cardullo, F. M. (2001). An integrated model of human motion perception with visual-vestibular interaction. AIAA Modeling and Simulation Technologies Conference and Exhibit (pp. 1–11). Montreal.
Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., & Beall, A. C. (2004). Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence: Teleoperators and Virtual Environments, 13(5), 560–571.
Thomson, J. A. (1983). Is continuous visual monitoring necessary in visually guided locomotion? Journal of Experimental Psychology: Human Perception and Performance, 9(3), 427–443.
Trutoiu, L. C., Streuber, S., Mohler, B. J., Schulte-Pelkum, J., & Bülthoff, H. H. (2008). Tricking people into feeling like they are moving when they are not paying attention. Applied Perception in Graphics and Visualization (APGV) (p. 190). doi:http://doi.acm.org/10.1145/1394281.1394319
Trutoiu, L. C., Mohler, B. J., Schulte-Pelkum, J., & Bülthoff, H. H. (2009). Circular, linear, and curvilinear vection in a large-screen virtual environment with floor projection. Computers & Graphics, 33(1), 47–58. doi:10.1016/j.cag.2008.11.008.
Urbantschitsch, V. (1897). Über Störungen des Gleichgewichtes und Scheinbewegungen. Zeitschrift für Ohrenheilkunde, 31, 234–294.
Väljamäe, A. (2007). Sound for multisensory motion simulators (PhD thesis). Göteborg: Chalmers University of Technology.
Väljamäe, A. (2009). Auditorily-induced illusory self-motion: A review. Brain Research Reviews, 61(2), 240–255. doi:10.1016/j.brainresrev.2009.07.001.
Väljamäe, A., Larsson, P., Västfjäll, D., & Kleiner, M. (2004). Auditory presence, individualized head-related transfer functions, and illusory ego-motion in virtual environments. Proceedings of 7th Annual Workshop of Presence (pp. 141–147). Valencia.
Väljamäe, A., Larsson, P., Västfjäll, D., & Kleiner, M. (2006). Vibrotactile enhancement of auditory induced self-motion and spatial presence. Journal of the Acoustic Engineering Society, 54(10), 954–963.
Väljamäe, A., Alliprandini, P. M. Z., Alais, D., & Kleiner, M. (2009). Auditory landmarks enhance circular vection in multimodal virtual reality. Journal of the Audio Engineering Society, 57(3), 111–120.
van der Steen, F. A. M. (1998). Self-motion perception (PhD thesis). Delft: Technical University Delft.
van der Steen, F. A. M., & Brockhoff, P. T. M. (2000). Induction and impairment of saturated yaw and surge vection. Perception & Psychophysics, 62(1), 89–99.
Vidyarthi, J. (2012). Sonic Cradle: Evoking mindfulness through “immersive” interaction design (MSc thesis). Surrey: Simon Fraser University. Retrieved from https://theses.lib.sfu.ca/thesis/etd7542
Von der Heyde, M., & Riecke, B. E. (2002). Embedding presence-related terminology in a logical and functional model. In F. R. Gouveia (Ed.), Presence (pp. 37–52). Retrieved from http://edoc.mpg.de/39355
von Helmholtz, H. (1866). Handbuch der physiologischen Optik. Leipzig: Voss.
Waller, D., Loomis, J. M., & Steck, S. D. (2003). Inertial cues do not enhance knowledge of environmental layout. Psychonomic Bulletin & Review, 10(4), 987–993.
Waller, D., Loomis, J. M., & Haun, D. B. M. (2004). Body-based senses enhance knowledge of directions in large-scale environments. Psychonomic Bulletin & Review, 11(1), 157–163.
Wallis, G., & Tichon, J. (2013). Predicting the efficacy of simulator-based training using a perceptual judgment task versus questionnaire-based measures of presence. Presence: Teleoperators and Virtual Environments, 22(1), 67–85. doi:10.1162/PRES_a_00135.
Wang, R. F. (2005). Beyond imagination: Perspective change problems revisited. Psicológica, 26(1), 25–38.
Wann, J., & Rushton, S. (1994). The illusion of self-motion in virtual-reality environments. Behavioral and Brain Sciences, 17(2), 338–340.
Warren, H. C. (1895). Sensations of rotation. Psychological Review, 2(3), 273–276. doi:10.1037/h0074437.
Warren, R., & Wertheim, A. H. (Eds.). (1990). Perception & control of self-motion. Hillsdale/London: Erlbaum.
Wertheim, A. H. (1994). Motion perception during self-motion – The direct versus inferential controversy revisited. Behavioral and Brain Sciences, 17(2), 293–311.
Willemsen, P., Gooch, A. A., Thompson, W. B., & Creem-Regehr, S. H. (2008). Effects of stereo viewing conditions on distance perception in virtual environments. Presence: Teleoperators and Virtual Environments, 17(1), 91–101. doi:http://dx.doi.org.proxy.lib.sfu.ca/10.1162/pres.17.1.91
Wist, E. R., Diener, H. C., Dichgans, J., & Brandt, T. (1975). Perceived distance and perceived speed of self-motion – Linear vs angular velocity. Perception & Psychophysics, 17(6), 549–554.
Witmer, B. G., & Kline, P. B. (1998). Judging perceived and traversed distance in virtual environments. Presence: Teleoperators and Virtual Environments, 7(2), 144–167.
Witmer, B. G., & Sadowski, W. J. (1998). Nonvisually guided locomotion to a previously viewed target in real and virtual environments. Human Factors, 40(3), 478–488.
Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240. doi:10.1162/105474698565686.
Witmer, B. G., Jerome, C. J., & Singer, M. J. (2005). The factor structure of the presence questionnaire. Presence: Teleoperators and Virtual Environments, 14(3), 298–312. doi:10.1162/105474605323384654.
Wolpert, L. (1990). Field-of-view information for self-motion perception. In R. Warren & A. H. Wertheim (Eds.), Perception & control of self-motion (pp. 101–126). Hillsdale: Erlbaum.
Wong, S. C. P., & Frost, B. J. (1981). The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Perception & Psychophysics, 30(3), 228–236.
Wood, R. W. (1895). The “Haunted Swing” illusion. Psychological Review, 2(3), 277–278. doi:10.1037/h0073333.
Wright, W. G. (2009). Linear vection in virtual environments can be strengthened by discordant inertial input. 31st Annual international conference of the IEEE EMBS (Engineering in Medicine and Biology Society) (pp. 1157–1160). Minneapolis. doi:10.1109/IEMBS.2009.5333425
Wright, W. G., DiZio, P., & Lackner, J. R. (2005). Vertical linear self-motion perception during visual and inertial motion: More than weighted summation of sensory inputs. Journal of Vestibular Research: Equilibrium & Orientation, 15(4), 185–195.
Acknowledgments
This work was funded by Simon Fraser University, the European Community (IST-2001-39223, FET Proactive Initiative, project “POEMS”) and the Max Planck Society.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Riecke, B.E., Schulte-Pelkum, J. (2015). An Integrative Approach to Presence and Self-Motion Perception Research. In: Lombard, M., Biocca, F., Freeman, J., IJsselsteijn, W., Schaevitz, R. (eds) Immersed in Media. Springer, Cham. https://doi.org/10.1007/978-3-319-10190-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-10190-3_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10189-7
Online ISBN: 978-3-319-10190-3
eBook Packages: Computer ScienceComputer Science (R0)