Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Integrative Approach to Presence and Self-Motion Perception Research

  • Chapter
Immersed in Media

Abstract

This chapter is concerned with the perception and simulation of self-motion in virtual environments, and how spatial presence and other higher cognitive and top-down factors can contribute to improve the illusion of self-motion (“vection”) in virtual reality (VR). In the real world, we are used to being able to move around freely and interact with our environment in a natural and effortless manner. Current VR technology does, however, hardly allow for natural, life-like interaction between the user and the virtual environment. One crucial shortcoming is the insufficient and often unconvincing simulation of self-motion, which frequently causes disorientation, unease, and motion sickness. The specific focus of this chapter is the investigation of potential relations between higher-level factors like presence on the one hand and self-motion perception in VR on the other hand. Even though both presence and self-motion illusions have been extensively studied in the past, the question whether/how they might be linked to one another has received relatively little attention by researchers so far. After reviewing relevant literature on vection and presence, we present data from two experiments, which explicitly investigated potential relations between vection and presence and indicate that there might indeed be a direct link between these two phenomena. We discuss theoretical and practical implications from these findings and conclude by sketching a tentative theoretical framework that discusses how a broadened view that incorporates both presence and vection research might lead to a better understanding of both phenomena, and might ultimately be employed to improve not only the perceptual effectiveness of a given VR simulation, but also its behavioural and goal/application-specific effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Sections <InternalRef RefID="Sec5" >9.2</Internal Ref>, <InternalRef RefID="Sec30" >9.6</Internal Ref> and <InternalRef RefID="Sec31" >9.7</Internal Ref> of this chapter are, in part, based on (Riecke and Schulte-Pelkum <CitationRef CitationID="CR107" >2013</Citation Ref>), with kind permission from Springer Science + Business Media: Riecke BE, Schulte-Pelkum J (2013) Perceptual and Cognitive Factors for Self-Motion Simulation in Virtual Environments: How Can Self-Motion Illusions (“Vection”) Be Utilized? In: Steinicke F, Visell Y, Campos J, Lécuyer A (eds) Human Walking in Virtual Environments. Springer, New York, pp 27–54, © Springer Science + Business Media New York 2013.

  2. 2.

    This section presents a re-analysis of the most relevant experimental conditions from Riecke et al. (<CitationRef CitationID="CR115" >2006a</Citation Ref>) (experiment 1) and is in part based on that paper, with an additional discussion in the context of presence and experiment 2 and the framework presented in this chapter.

References

  • Andersen, G. J. (1986). Perception of self-motion – Psychophysical and computational approaches. Psychological Bulletin, 99(1), 52–65.

    Google Scholar 

  • Andersen, G. J., & Braunstein, M. L. (1985). Induced self-motion in central vision. Journal of Experimental Psychology: Human Perception and Performance, 11(2), 122–132.

    Google Scholar 

  • Ash, A., Palmisano, S., Govan, D. G., & Kim, J. (2011a). Display lag and gain effects on vection experienced by active observers. Aviation, Space and Environmental Medicine, 82(8), 763–769. doi:10.3357/ASEM.3026.2011.

    Google Scholar 

  • Ash, A., Palmisano, S., & Kim, J. (2011b). Vection in depth during consistent and inconsistent multisensory stimulation. Perception, 40(2), 155–174. doi:10.1068/p6837.

    Google Scholar 

  • Ash, A., Palmisano, S., & Allison, R. (2012). Vection in depth during treadmill locomotion. Journal of Vision, 12(9), 181. doi:10.1167/12.9.181.

    Google Scholar 

  • Ash, A., Palmisano, S., Apthorp, D., & Allison, R. S. (2013). Vection in depth during treadmill walking. Perception, 42(5), 562–576. doi:10.1068/p7449.

    Google Scholar 

  • Avraamides, M. N., & Kelly, J. W. (2008). Multiple systems of spatial memory and action. Cognitive Processing, 9, 93–106. doi:10.1007/s10339-007-0188-5.

    Google Scholar 

  • Avraamides, M. N., Klatzky, R. L., Loomis, J. M., & Golledge, R. G. (2004). Use of cognitive versus perceptual heading during imagined locomotion depends on the response mode. Psychological Science, 15(6), 403–408. doi:10.1111/j.0956-7976.2004.00692.x.

    Google Scholar 

  • Bailenson, J. N., Guadagno, R. E., Aharoni, E., Dimov, A., Beall, A. C., & Blascovich, J. (2004). Comparing behavioral and self-report measures of embodied agents: Social presence in immersive virtual environments. Paper presented at. Proceedings of the 7th annual international workshop on PRESENCE. Barcelona, Spain.

    Google Scholar 

  • Bakker, N. H., Werkhoven, P. J., & Passenier, P. O. (1999). The effects of proprioceptive and visual feedback on geographical orientation in virtual environments. Presence: Teleoperators and Virtual Environments, 8(1), 36–53.

    Google Scholar 

  • Bakker, N. H., Werkhoven, P. J., & Passenier, P. O. (2001). Calibrating visual path integration in VEs. Presence: Teleoperators and Virtual Environments, 10(2), 216–224.

    Google Scholar 

  • Becker, W., Nasios, G., Raab, S., & Jürgens, R. (2002). Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets. Experimental Brain Research, 144(4), 458–474.

    Google Scholar 

  • Berger, D. R., Schulte-Pelkum, J., & Bülthoff, H. H. (2010). Simulating believable forward accelerations on a stewart motion platform. ACM Transactions on Applied Perception, 7(1), 1–27. doi:10.1145/1658349.1658354.

    Google Scholar 

  • Berthoz, A., & Droulez, J. (1982). Linear self motion perception. In A. H. Wertheim, W. A. Wagenaar, & H. W. Leibowitz (Eds.), Tutorials on motion perception (pp. 157–199). New York: Plenum.

    Google Scholar 

  • Berthoz, A., Pavard, B., & Young, L. R. (1975). Perception of linear horizontal self-motion induced by peripheral vision (linearvection) – basic characteristics and visual-vestibular interactions. Experimental Brain Research, 23(5), 471–489.

    Google Scholar 

  • Biocca, F. (1997). The cyborg’s dilemma: Progressive embodiment in virtual environments. Journal of Computer-Mediated Communication, 3(2).

    Google Scholar 

  • Bles, W. (1981). Stepping around: Circular vection and Coriolis effects. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 47–61). Hillsdale: Erlbaum.

    Google Scholar 

  • Bles, W., & Kapteyn, T. S. (1977). Circular vection and human posture: 1. Does proprioceptive system play a role? Agressologie, 18(6), 325–328.

    Google Scholar 

  • Bles, W., Bos, J. E., de Graaf, B., Groen, E., & Wertheim, A. H. (1998). Motion sickness: Only one provocative conflict? Brain Research Bulletin, 47(5), 481–487.

    Google Scholar 

  • Boer, E. R., Girshik, A. R., Yamamura, T., & Kuge, N. (2000). Experiencing the same road twice: A driver-centred comparison between simulation and reality. Proceedings of the Driving Simulation conference 2000, Paris.

    Google Scholar 

  • Bouchard, S., Dumoulin, S., Talbot, J., Ledoux, A.-A., Phillips, J., Monthuy-Blanc, J., Labonté-Chartrand, G., et al. (2012). Manipulating subjective realism and its impact on presence: Preliminary results on feasibility and neuroanatomical correlates. Interacting with Computers, 24(4), 227–236. doi:10.1016/j.intcom.2012.04.011.

    Google Scholar 

  • Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research, 16, 476–491.

    Google Scholar 

  • Burki-Cohen, J., Go, T. H., Chung, W. Y., Schroeder, J., Jacobs, S., & Longridge, T. (2003, April 14–17). Simulator fidelity requirements for airline pilot training and evaluation continued: An update on motion requirements research. Proceedings of the 12th international symposium on Aviation Psychology (pp. 182–189). Dayton.

    Google Scholar 

  • Chance, S. S., Gaunet, F., Beall, A. C., & Loomis, J. M. (1998). Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence: Teleoperators and Virtual Environments, 7(2), 168–178.

    Google Scholar 

  • Cheung, B. S. K., Howard, I. P., Nedzelski, J. M., & Landolt, J. P. (1989). Circularvection about earth-horizontal axes in bilateral labyrinthine-defective subjects. Acta Oto-Laryngologica, 108(5), 336. doi:10.3109/00016488909125537.

    Google Scholar 

  • Conrad, B., Schmidt, S., & Douvillier, J. (1973). Washout circuit design for multi-degrees-of-freedom moving base simulators. Visual and Motion Simulation Conference. AIAA paper 1973–929.

    Google Scholar 

  • Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., & Thompson, W. B. (2005). The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual indoor environments. Perception, 34(2), 191–204. doi:10.1068/p5144.

    Google Scholar 

  • Dichgans, J., & Brandt, T. (1978). Visual-vestibular interaction: Effects on self-motion perception and postural control. In R. Held, H. W. Leibowitz, & H.-L. Teuber (Eds.), Perception, handbook of sensory physiology (Vol. VIII, pp. 756–804). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Diener, H. C., Wist, E. R., Dichgans, J., & Brandt, T. (1976). The spatial frequency effect on perceived velocity. Vision Research, 16(2), 169–176. doi:10.1016/0042-6989(76)90094-8. IN4–IN7.

    Google Scholar 

  • Distler, H. K. (2003). Wahrnehmung in Virtuellen Welten (PhD thesis). Giessen: Justus-Liebig-Universität.

    Google Scholar 

  • Dodge, R. (1923). Thresholds of rotation. Journal of Experimental Psychology, 6(2), 107–137. doi:10.1037/h0076105.

    Google Scholar 

  • Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162–169.

    Google Scholar 

  • Feuereissen, D. (2013, August). Self-motion illusions (vection) in virtual environments: Do active control and user-generated motion cueing enhance visually induced vection? (MSc thesis). Surrey: Simon Fraser University. Retrieved from https://theses.lib.sfu.ca/thesis/etd7976

  • Freeman, J., Avons, S. E., Meddis, R., Pearson, D. E., & IJsselsteijn, W. I. (2000). Using behavioral realism to estimate presence: A study of the utility of postural responses to motion stimuli. Presence: Teleoperators and Virtual Environments, 9(2), 149–164.

    Google Scholar 

  • Giannopulu, I., & Lepecq, J. C. (1998). Linear-vection chronometry along spinal and sagittal axes in erect man. Perception, 27(3), 363–372.

    Google Scholar 

  • Grant, P. R., & Reid, L. D. (1997). Motion washout filter tuning: Rules and requirements. Journal of Aircraft, 34(2), 145–151. doi:10.2514/2.2158.

    Google Scholar 

  • Grechkin, T. Y., Nguyen, T. D., Plumert, J. M., Cremer, J. F., & Kearney, J. K. (2010). How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Transactions on Applied Perception, 7(4), 26:1–26:18. doi:10.1145/1823738.1823744

  • Guedry, F. E., Rupert, A. R., & Reschke, M. F. (1998). Motion sickness and development of synergy within the spatial orientation system. A hypothetical unifying concept. Brain Research Bulletin, 47(5), 475–480.

    Google Scholar 

  • Haans, A., & IJsselsteijn, W. A. (2012). Embodiment and telepresence: Toward a comprehensive theoretical framework. Interacting with Computers, 24(4), 211–218. doi:10.1016/j.intcom.2012.04.010.

    Google Scholar 

  • Hale, K. S., & Stanney, K. M. (2014). Handbook of virtual environments: Design, implementation, and applications (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Hartmann, T., Wirth, W., Vorderer, P., Klimmt, C., Schramm, H., & Böking, S. (2014). Spatial presence theory: State of the art and challenges ahead. In F. Biocca, J. Freeman, W. IJsselsteijn, M. Lombard, & R. J. Schaevitz (Eds.), Immersed in media: Telepresence theory, measurement and technology. New York: Springer.

    Google Scholar 

  • Hennebert, P. E. (1960). Audiokinetic Nystagmus. Journal of Auditory Research, 1(1), 84–87.

    Google Scholar 

  • Hettinger, L. J., Schmidt, T., Jones, D. L., & Keshavarz, B. (2014). Illusory self-motion in virtual environments. In K. S. Hale & K. M. Stanney (Eds.), Handbook of virtual environments, human factors and ergonomics (pp. 435–466). Boca Raton: CRC Press.

    Google Scholar 

  • Hoffman, H. G., Richards, T., Coda, B., Richards, A., & Sharar, S. R. (2003). The illusion of presence in immersive virtual reality during an fMRI brain scan. CyberPsychology & Behavior, 6(2), 127–131. doi:10.1089/109493103321640310.

    Google Scholar 

  • Howard, I. P. (1982). Human visual orientation. Chichester/New York: Wiley.

    Google Scholar 

  • Howard, I. P. (1986). The perception of posture, self motion, and the visual vertical. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Sensory processes and perception (Handbook of human perception and performance, Vol. 1, pp. 18.1–18.62). New York: Wiley.

    Google Scholar 

  • Howard, I. P., & Heckmann, T. (1989). Circular vection as a function of the relative sizes, distances, and positions of two competing visual displays. Perception, 18(5), 657–665. doi:10.1068/p180657.

    Google Scholar 

  • Howard, I. P., & Howard, A. (1994). Vection – The contributions of absolute and relative visual motion. Perception, 23(7), 745–751.

    Google Scholar 

  • IJsselsteijn, W. A. (2004). Presence in depth. Netherlands: Technische Universiteit Eindhoven, Eindhoven.

    Google Scholar 

  • IJsselsteijn, W., de Ridder, H., Freeman, J., Avons, S. E., & Bouwhuis, D. (2001). Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence: Teleoperators and Virtual Environments, 10(3), 298–311.

    Google Scholar 

  • Ito, H., & Shibata, I. (2005). Self-motion perception from expanding and contracting optical flows overlapped with binocular disparity. Vision Research, 45(4), 397–402. doi:10.1016/j.visres.2004.11.009.

    Google Scholar 

  • Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., & Walton, A. (2008). Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies, 66(9), 641–661. doi:10.1016/j.ijhcs.2008.04.004.

    Google Scholar 

  • Johansson, G. (1977). Studies on visual-perception of locomotion. Perception, 6(4), 365–376. doi:10.1068/p060365.

    Google Scholar 

  • Johnson, W. H., Sunahara, F. A., & Landolt, J. P. (1999). Importance of the vestibular system in visually induced nausea and self-vection. Journal of Vestibular Research: Equilibrium & Orientation, 9(2), 83–87.

    Google Scholar 

  • Kano, C. (1991). The perception of self-motion induced by peripheral visual information in sitting and supine postures. Ecological Psychology, 3(3), 241–252. doi:10.1207/s15326969eco0303_3.

    MathSciNet  Google Scholar 

  • Kearns, M. J., Warren, W. H., Duchon, A. P., & Tarr, M. J. (2002). Path integration from optic flow and body senses in a homing task. Perception, 31(3), 349–374.

    Google Scholar 

  • Kemeny, A., & Panerai, F. (2003). Evaluating perception in driving simulation experiments. Trends in Cognitive Sciences, 7(1), 31–37.

    Google Scholar 

  • Kennedy, R. S., Drexler, J., & Kennedy, R. C. (2010). Research in visually induced motion sickness. Applied Ergonomics, 41(4), 494–503. doi:10.1016/j.apergo.2009.11.006.

    Google Scholar 

  • Keshavarz, B., Hettinger, L. J., Vena, D., & Campos, J. L. (2013). Combined effects of auditory and visual cues on the perception of vection. Experimental Brain Research. doi:10.1007/s00221-013-3793-9.

    MATH  Google Scholar 

  • Kitazaki, M., & Sato, T. (2003). Attentional modulation of self-motion perception. Perception, 32(4), 475–484. doi:10.1068/p5037.

    Google Scholar 

  • Kitazaki, M., Onimaru, S., & Sato, T. (2010). Vection and action are incompatible (pp. 22–23). Presented at the 2nd IEEE VR 2010 workshop on Perveptual Illusions in Virtual Environments (PIVE), Waltham.

    Google Scholar 

  • Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., & Golledge, R. G. (1998). Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychological Science, 9(4), 293–298. doi:10.1111/1467-9280.00058.

    Google Scholar 

  • Knapp, J. M., & Loomis, J. M. (2004). Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence, 13(5), 572–577.

    Google Scholar 

  • Lackner, J. R. (1977). Induction of illusory self-rotation and nystagmus by a rotating sound-field. Aviation, Space and Environmental Medicine, 48(2), 129–131.

    Google Scholar 

  • Larsson, P., Västfjäll, D., & Kleiner, M. (2004). Perception of self-motion and presence in auditory virtual environments. Proceedings of 7th annual workshop of Presence (pp. 252–258). Valencia.

    Google Scholar 

  • Lawson, B. D., & Riecke, B. E. (2014). The perception of body motion. In K. S. Hale & K. M. Stanney (Eds.), Handbook of virtual environments: Design, implementation, and applications (2nd ed., pp. 163–195). Boca Raton: CRC Press.

    Google Scholar 

  • Lawson, B. D., Graeber, D. A., Mead, A. M., & Muth, E. R. (2002). Signs and symptoms of human syndromes associated with synthetic experiences. In K. M. Stanney (Ed.), Handbook of virtual environments (pp. 589–618). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Lee, K. M. (2004). Presence, explicated. Communication Theory, 14(1), 27–50. doi:10.1111/j.1468-2885.2004.tb00302.x.

    Google Scholar 

  • Lepecq, J. C., Jouen, F., & Dubon, D. (1993). The effect of linear vection on manual aiming at memorized directions of stationary targets. Perception, 22(1), 49–60.

    Google Scholar 

  • Lepecq, J. C., Giannopulu, I., & Baudonniere, P. M. (1995). Cognitive effects on visually induced body motion in children. Perception, 24(4), 435–449.

    Google Scholar 

  • Loomis, J. M. (1992). Distal attribution and presence. Presence: Teleoperators and Virtual Environments, 1(1), 113–119.

    MathSciNet  Google Scholar 

  • Loomis, J. M., da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 906–921.

    Google Scholar 

  • Loomis, J. M., Da Silva, J. A., Philbeck, J. W., & Fukusima, S. S. (1996). Visual perception of location and distance. Current Directions in Psychological Science, 5(3), 72–77.

    Google Scholar 

  • Lowther, K., & Ware, C. (1996). Vection with large screen 3D imagery. In ACM CHI ’96 (pp. 233–234). New York: ACM.

    Google Scholar 

  • Mach, E. (1875). Grundlinien der Lehre von der Bewegungsempfindung. Leipzig: Engelmann.

    Google Scholar 

  • Marme-Karelse, A. M., & Bles, W. (1977). Circular vection and human posture, II. Does the auditory system play a role? Agressologie, 18(6), 329–333.

    Google Scholar 

  • May, M. (1996). Cognitive and embodied modes of spatial imagery. Psychologische Beiträge, 38(3/4), 418–434.

    Google Scholar 

  • May, M. (2004). Imaginal perspective switches in remembered environments: Transformation versus interference accounts. Cognitive Psychology, 48(2), 163–206.

    Google Scholar 

  • Meehan, M., Insko, B., Whitton, M., & Brooks, F. P. (2002). Physiological measures of presence in stressful virtual environments. In Proceedings of the 29th annual conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’02, pp. 645–652). New York: ACM. doi:10.1145/566570.566630.

    Google Scholar 

  • Mergner, T., & Becker, W. (1990). Perception of horizontal self-rotation: Multisensory and cognitive aspects. In R. Warren & A. H. Wertheim (Eds.), Perception & control of self-motion (pp. 219–263). Hillsdale/London: Erlbaum.

    Google Scholar 

  • Mohler, B. J., Thompson, W. B., Riecke, B., & Bülthoff, H. H. (2005). Measuring vection in a large screen virtual environment. In Proceedings of the 2nd symposium on applied perception in graphics and visualization (APGV ’05, pp. 103–109). New York: ACM. http://doi.acm.org/10.1145/1080402.1080421.

    Google Scholar 

  • Mulder, M., van Paassen, M. M., & Boer, E. R. (2004). Exploring the roles of information in the control of vehicular locomotion – From kinematics and dynamics to cybernetics. Presence: Teleoperators and Virtual Environments, 13, 535–548.

    Google Scholar 

  • Nakamura, S. (2006). Effects of depth, eccentricity and size of additional static stimulus on visually induced self-motion perception. Vision Research, 46(15), 2344–2353. doi:10.1016/j.visres.2006.01.016.

    Google Scholar 

  • Nakamura, S. (2008). Effects of stimulus eccentricity on vection reevaluated with a binocularly defined depth. Japanese Psychological Research, 50(2), 77–86. doi:10.1111/j.1468-5884.2008.00363.x.

    Google Scholar 

  • Nakamura, S., & Shimojo, S. (1999). Critical role of foreground stimuli in perceiving visually induced self-motion (vection). Perception, 28(7), 893–902.

    Google Scholar 

  • Nash, E. B., Edwards, G. W., Thompson, J. A., & Barfield, W. (2000). A review of presence and performance in virtual environments. International Journal of Human-Computer Interaction, 12(1), 1–41. doi:10.1207/S15327590IJHC1201_1.

    Google Scholar 

  • Nunez, D. (2003). A connectionist explanation of presence in virtual environments (Master’s thesis). South Africa: University of Cape Town. Retrieved from http://www.cs.uct.ac.za/~dnunez/dnunez_thesis.pdf

  • Nunez, D., & Blake, E. (2003). Conceptual priming as a determinant of presence in virtual environments. In AFRIGRAPH ’03 Proceedings of the 2nd international conference on computer graphics, virtual reality, visualisation and interaction in Africa (pp. 101–108). New York: ACM Press. doi:10.1145/602330.602350.

    Google Scholar 

  • Ohmi, M., Howard, I. P., & Landolt, J. P. (1987). Circular vection as a function of foreground-background relationships. Perception, 16(1), 17–22.

    Google Scholar 

  • Onimaru, S., Sato, T., & Kitazaki, M. (2010). Veridical walking inhibits vection perception. Journal of Vision, 10(7), 860. doi:10.1167/10.7.860.

    Google Scholar 

  • Palmisano, S. (1996). Perceiving self-motion in depth: The role of stereoscopic motion and changing-size cues. Perception & Psychophysics, 58(8), 1168–1176.

    Google Scholar 

  • Palmisano, S. (2002). Consistent stereoscopic information increases the perceived speed of vection in depth. Perception, 31(4), 463–480. doi:10.1068/p3321.

    Google Scholar 

  • Palmisano, S., & Chan, A. Y. C. (2004). Jitter and size effects on vection are immune to experimental instructions and demands. Perception, 33(8), 987–1000.

    Google Scholar 

  • Palmisano, S., & Gillam, B. (1998). Stimulus eccentricity and spatial frequency interact to determine circular vection. Perception, 27(9), 1067–1077.

    Google Scholar 

  • Palmisano, S., & Kim, J. (2009). Effects of gaze on vection from jittering, oscillating, and purely radial optic flow. Attention, Perception, & Psychophysics, 71(8), 1842–1853. doi:10.3758/APP.71.8.1842.

    Google Scholar 

  • Palmisano, S., Gillam, B. J., & Blackburn, S. G. (2000). Global-perspective jitter improves vection in central vision. Perception, 29(1), 57–67.

    Google Scholar 

  • Palmisano, S., Allison, R. S., Kim, J., & Bonato, F. (2011). Simulated viewpoint jitter shakes sensory conflict accounts of vection. Seeing and Perceiving, 24(2), 173–200. doi:10.1163/187847511X570817.

    Google Scholar 

  • Palmisano, S., Apthorp, D., Seno, T., & Stapley, P. J. (2014). Spontaneous postural sway predicts the strength of smooth vection. Experimental Brain Research, 232(4), 1185–1191. doi:10.1007/s00221-014-3835-y.

    Google Scholar 

  • Plumert, J. M., Kearney, J. K., & Cremer, J. F. (2004). Distance perception in real and virtual environments. In ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV) (pp. 27–34). New York: ACM.

    Google Scholar 

  • Prothero, J. D. (1998). The role of rest frames in vection, presence and motion sickness (PhD thesis). University of Washington. Retrieved from ftp://ftp.hitl.washington.edu/pub/publications/r-98-11/temp/r-98-11.pdf

  • Prothero, J. D., & Parker, D. E. (2003). A unified approach to presence and motion sickness. In L. J. Hettinger & M. W. Haas (Eds.), Virtual and adaptive environments: Applications, implications, and human performance issues (pp. 47–66). Mahwah, NJ, USA: Lawrence Erlbaum.

    Google Scholar 

  • Riecke, B. E. (2003). How far can we get with just visual information? Path integration and spatial updating studies in virtual reality (MPI series in biological cybernetics, Vol. 8). Berlin: Logos. Retrieved from http://www.logos-verlag.de/cgi-bin/buch/isbn/0440.

    Google Scholar 

  • Riecke, B. E. (2006). Simple user-generated motion cueing can enhance self-motion perception (Vection) in virtual reality. In Proceedings of the ACM symposium on Virtual Reality Software and Technology (VRST) (pp. 104–107). Limassol: ACM. doi:10.1145/1180495.1180517.

    Google Scholar 

  • Riecke, B. E. (2009). Cognitive and higher-level contributions to illusory self-motion perception (“vection”): Does the possibility of actual motion affect vection? Japanese Journal of Psychonomic Science, 28(1), 135–139.

    MathSciNet  Google Scholar 

  • Riecke, B. E. (2011). Compelling self-motion through virtual environments without actual self-motion – using self-motion illusions (“vection”) to improve user experience in VR. In J.-J. Kim (Ed.), Virtual reality (pp. 149–176). InTech. doi:10.5772/13150. Retrieved from http://www.intechopen.com/articles/show/title/compelling-self-motion-through-virtual-environments-without-actual-self-motion-using-self-motion-ill

  • Riecke, B. E. (2012). Are left-right hemisphere errors in point-to-origin tasks in VR caused by failure to incorporate heading changes? In C. Stachniss, K. Schill, & D. Uttal, (Eds.) Lecture Notes in Computer Science (Vo. 7463, pp. 143–162). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Riecke, B. E., & Feuereissen, D. (2012). To move or not to move: Can active control and user-driven motion cueing enhance self-motion perception (“vection”) in virtual reality? In ACM symposium on applied perception SAP (pp. 17–24). Los Angeles: ACM. doi:10.1145/2338676.2338680.

    Google Scholar 

  • Riecke, B. E., & McNamara, T. P. (submitted). Where you are affects what you can easily imagine: Environmental geometry elicits sensorimotor interference in remote perspective taking. Cognition.

    Google Scholar 

  • Riecke, B. E., & Schulte-Pelkum, J. (2006). Using the perceptually oriented approach to optimize spatial presence & ego-motion simulation (No. 153). MPI for Biological Cybernetics. Retrieved from http://www.kyb.mpg.de/publication.html?publ=4186

  • Riecke, B. E., & Schulte-Pelkum, J. (2013). Perceptual and cognitive factors for self-motion simulation in virtual environments: How can self-motion illusions (“vection”) be utilized? In F. Steinicke, Y. Visell, J. Campos, & A. Lécuyer (Eds.), Human walking in virtual environments (pp. 27–54). New York: Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4419-8432-6_2.

    Google Scholar 

  • Riecke, B. E., van Veen, H. A. H. C., & Bülthoff, H. H. (2002). Visual homing is possible without landmarks: A path integration study in virtual reality. Presence: Teleoperators and Virtual Environments, 11, 443–473. doi:10.1162/105474602320935810.

    Google Scholar 

  • Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., & Bülthoff, H. H. (2004). Enhancing the visually induced self-motion illusion (vection) under natural viewing conditions in virtual reality. Proceedings of 7th annual workshop presence 2004 (pp. 125–132). doi:10.1.1.122.5636.

    Google Scholar 

  • Riecke, B. E., Heyde, M. V. D., & Bülthoff, H. H. (2005a). Visual cues can be sufficient for triggering automatic, reflexlike spatial updating. ACM Transactions on Applied Perception (TAP), 2, 183–215. doi:http://doi.acm.org/10.1145/1077399.1077401

  • Riecke, B. E., Schulte-Pelkum, J., & Bülthoff, H. H. (2005b). Perceiving simulated ego-motions in virtual reality – Comparing large screen displays with HMDs. Proceedings of the SPIE (Vol. 5666, pp. 344–355). San Jose. doi:10.1117/12.610846.

  • Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005c). Towards lean and elegant self-motion simulation in virtual reality. Proceedings of the 2005 IEEE Conference 2005 on Virtual Reality, VR ’05 (pp. 131–138). doi:10.1109/VR.2005.83

  • Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005d). Influence of auditory cues on the visually-induced self-motion illusion (circular vection) in virtual reality. Proceedings of 8th Annual Workshop Presence 2005 (pp. 49–57). Retrieved from http://en.scientificcommons.org/20596230

  • Riecke, B. E., Västfjäll, D., Larsson, P., & Schulte-Pelkum, J. (2005e). Top-down and multi-modal influences on self-motion perception in virtual reality. Proceedings of HCI international 2005 (pp. 1–10). Las Vegas. Retrieved from http://en.scientificcommons.org/20596227

  • Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., Heyde, M. V. D., & Bülthoff, H. H. (2006a). Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Transactions on Applied Perception (TAP), 3(3), 194–216. doi:10.1145/1166087.1166091.

    Google Scholar 

  • Riecke, B. E., Schulte-Pelkum, J., & Caniard, F. (2006b). Visually induced linear vection is enhanced by small physical accelerations. 7th International Multisensory Research Forum (IMRF). Dublin.

    Google Scholar 

  • Riecke, B. E., Cunningham, D. W., & Bülthoff, H. H. (2007). Spatial updating in virtual reality: The sufficiency of visual information. Psychological Research, 71(3), 298–313. doi:http://dx.doi.org/10.1007/s00426-006-0085-z.

    Google Scholar 

  • Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2009a). Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Transactions on Applied Perception, 6(3), 1–22. doi:10.1145/1577755.1577763.

    Google Scholar 

  • Riecke, B. E., Väljamäe, A., & Schulte-Pelkum, J. (2009b). Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Transactions on Applied Perception (TAP), 6, 7:1–7:27. doi:http://doi.acm.org/10.1145/1498700.1498701

  • Riecke, B., Bodenheimer, B., McNamara, T., Williams, B., Peng, P., & Feuereissen, D. (2010). Do We need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In C. Hölscher, T. Shipley, M. Olivetti Belardinelli, J. Bateman, & N. Newcombe (Eds.), Spatial cognition VII, lecture notes in computer science (Vol. 6222, pp. 234–247). Berlin/Heidelberg: Springer. Retrieved from doi: 10.1007/978-3-642-14749-4_21.

    Google Scholar 

  • Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2011). Spatialized sound enhances biomechanically-induced self-motion illusion (vection). In Proceedings of the 2011 annual conference on human factors in computing systems, CHI ’11 (pp. 2799–2802). Presented at the ACM SIG.CHI, Vancouver. doi:10.1145/1978942.1979356

  • Rieser, J. J., Ashmead, D. H., Talor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19(5), 675–689.

    Google Scholar 

  • Ruddle, R. A. (2013). The effect of translational and rotational body-based information on navigation. In F. Steinicke, Y. Visell, J. Campos, & A. Lécuyer (Eds.), Human walking in virtual environments (pp. 99–112). New York: Springer. Retrieved from http://link.springer.com.proxy.lib.sfu.ca/chapter/10.1007/978-1-4419-8432-6_5.

    Google Scholar 

  • Ruddle, R. A., & Lessels, S. (2006). For efficient navigational search, humans require full physical movement, but not a rich visual scene. Psychological Science, 17(6), 460–465. doi:10.1111/j.1467-9280.2006.01728.x.

    Google Scholar 

  • Ruddle, R. A., & Peruch, P. (2004). Effects of proprioceptive feedback and environmental characteristics on spatial learning in virtual environments. International Journal Of Human-Computer Studies, 60(3), 299–326.

    Google Scholar 

  • Sadowski, W., & Stanney, K. (2002). Presence in virtual environments. In K. M. Stanney (Ed.), Handbook of virtual environments (pp. 791–806). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The experience of presence: Factor analytic insights. Presence: Teleoperators and Virtual Environments, 10(3), 266–281.

    Google Scholar 

  • Schulte-Pelkum, J. (2007). Perception of self-motion: Vection experiments in multi-sensory Virtual Environments (PhD thesis). Ruhr-Universität Bochum. Retrieved from http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/SchultePelkumJoerg/

  • Schulte-Pelkum, J., Riecke, B. E., von der Heyde, M., & Bülthoff, H. H. (2003). Circular vection is facilitated by a consistent photorealistic scene. Talk presented at the Presence 2003 conference, Aalborg.

    Google Scholar 

  • Schultze, U. (2010). Embodiment and presence in virtual worlds: A review. Journal of Information Technology, 25(4), 434. doi:10.1057/jit.2010.25.

    Google Scholar 

  • Seno, T., Ito, H., & Sunaga, S. (2009). The object and background hypothesis for vection. Vision Research, 49(24), 2973–2982. doi:10.1016/j.visres.2009.09.017.

    Google Scholar 

  • Seno, T., Ito, H., & Sunaga, S. (2011a). Attentional load inhibits vection. Attention, Perception, & Psychophysics, 73(5), 1467–1476. doi:10.3758/s13414-011-0129-3.

    Google Scholar 

  • Seno, T., Ogawa, M., Ito, H., & Sunaga, S. (2011b). Consistent air flow to the face facilitates vection. Perception, 40(10), 1237–1240.

    Google Scholar 

  • Seno, T., Palmisano, S., Ito, H., & Sunaga, S. (2012). Vection can be induced without global-motion awareness. Perception, 41(4), 493–497. doi:10.1068/p7206.

    Google Scholar 

  • Slater, M. (1999). Measuring presence: A response to the Witmer and Singer presence questionnaire. Presence: Teleoperators and Virtual Environments, 8(5), 560–565. doi:10.1162/105474699566477.

    Google Scholar 

  • Slater, M. (2004). How colorful was your day? Why questionnaires cannot assess presence in virtual environments. Presence: Teleoperators and Virtual Environments, 13(4), 484–493.

    Google Scholar 

  • Slater, M., & Garau, M. (2007). The Use of questionnaire data in presence studies: Do not seriously likert. Presence: Teleoperators and Virtual Environments, 16(4), 447–456. doi:10.1162/pres.16.4.447.

    Google Scholar 

  • Slater, M., & Steed, A. (2000). A virtual presence counter. Presence: Teleoperators and Virtual Environments, 9(5), 413–434. doi:10.1162/105474600566925.

    Google Scholar 

  • Slater, M., Steed, A., McCarthy, J., & Maringelli, F. (1998). The influence of body movement on subjective presence in virtual environments. Human Factors, 40(3), 469–477.

    Google Scholar 

  • Steuer, J. S. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 73–93. doi:10.1111/j.1460-2466.1992.tb00812.x.

    Google Scholar 

  • Stroosma, O., (René) van Paassen, M. M., & Mulder, M. (2003). Using the SIMONA research simulator for human-machine interaction research. AIAA Modeling and Simulation Technologies Conference and Exhibit. American Institute of Aeronautics and Astronautics. Retrieved from http://arc.aiaa.org/doi/abs/10.2514/6.2003-5525

  • Tan, D. S., Gergle, D., Scupelli, P., & Pausch, R. (2006). Physically large displays improve performance on spatial tasks. ACM Transactions on Computer-Human Interaction, 13(1), 71–99. doi:http://doi.acm.org/10.1145/1143518.1143521

  • Telban, R. J., & Cardullo, F. M. (2001). An integrated model of human motion perception with visual-vestibular interaction. AIAA Modeling and Simulation Technologies Conference and Exhibit (pp. 1–11). Montreal.

    Google Scholar 

  • Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., & Beall, A. C. (2004). Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence: Teleoperators and Virtual Environments, 13(5), 560–571.

    Google Scholar 

  • Thomson, J. A. (1983). Is continuous visual monitoring necessary in visually guided locomotion? Journal of Experimental Psychology: Human Perception and Performance, 9(3), 427–443.

    Google Scholar 

  • Trutoiu, L. C., Streuber, S., Mohler, B. J., Schulte-Pelkum, J., & Bülthoff, H. H. (2008). Tricking people into feeling like they are moving when they are not paying attention. Applied Perception in Graphics and Visualization (APGV) (p. 190). doi:http://doi.acm.org/10.1145/1394281.1394319

  • Trutoiu, L. C., Mohler, B. J., Schulte-Pelkum, J., & Bülthoff, H. H. (2009). Circular, linear, and curvilinear vection in a large-screen virtual environment with floor projection. Computers & Graphics, 33(1), 47–58. doi:10.1016/j.cag.2008.11.008.

    Google Scholar 

  • Urbantschitsch, V. (1897). Über Störungen des Gleichgewichtes und Scheinbewegungen. Zeitschrift für Ohrenheilkunde, 31, 234–294.

    Google Scholar 

  • Väljamäe, A. (2007). Sound for multisensory motion simulators (PhD thesis). Göteborg: Chalmers University of Technology.

    Google Scholar 

  • Väljamäe, A. (2009). Auditorily-induced illusory self-motion: A review. Brain Research Reviews, 61(2), 240–255. doi:10.1016/j.brainresrev.2009.07.001.

    Google Scholar 

  • Väljamäe, A., Larsson, P., Västfjäll, D., & Kleiner, M. (2004). Auditory presence, individualized head-related transfer functions, and illusory ego-motion in virtual environments. Proceedings of 7th Annual Workshop of Presence (pp. 141–147). Valencia.

    Google Scholar 

  • Väljamäe, A., Larsson, P., Västfjäll, D., & Kleiner, M. (2006). Vibrotactile enhancement of auditory induced self-motion and spatial presence. Journal of the Acoustic Engineering Society, 54(10), 954–963.

    Google Scholar 

  • Väljamäe, A., Alliprandini, P. M. Z., Alais, D., & Kleiner, M. (2009). Auditory landmarks enhance circular vection in multimodal virtual reality. Journal of the Audio Engineering Society, 57(3), 111–120.

    Google Scholar 

  • van der Steen, F. A. M. (1998). Self-motion perception (PhD thesis). Delft: Technical University Delft.

    Google Scholar 

  • van der Steen, F. A. M., & Brockhoff, P. T. M. (2000). Induction and impairment of saturated yaw and surge vection. Perception & Psychophysics, 62(1), 89–99.

    Google Scholar 

  • Vidyarthi, J. (2012). Sonic Cradle: Evoking mindfulness through “immersive” interaction design (MSc thesis). Surrey: Simon Fraser University. Retrieved from https://theses.lib.sfu.ca/thesis/etd7542

  • Von der Heyde, M., & Riecke, B. E. (2002). Embedding presence-related terminology in a logical and functional model. In F. R. Gouveia (Ed.), Presence (pp. 37–52). Retrieved from http://edoc.mpg.de/39355

  • von Helmholtz, H. (1866). Handbuch der physiologischen Optik. Leipzig: Voss.

    Google Scholar 

  • Waller, D., Loomis, J. M., & Steck, S. D. (2003). Inertial cues do not enhance knowledge of environmental layout. Psychonomic Bulletin & Review, 10(4), 987–993.

    Google Scholar 

  • Waller, D., Loomis, J. M., & Haun, D. B. M. (2004). Body-based senses enhance knowledge of directions in large-scale environments. Psychonomic Bulletin & Review, 11(1), 157–163.

    Google Scholar 

  • Wallis, G., & Tichon, J. (2013). Predicting the efficacy of simulator-based training using a perceptual judgment task versus questionnaire-based measures of presence. Presence: Teleoperators and Virtual Environments, 22(1), 67–85. doi:10.1162/PRES_a_00135.

    Google Scholar 

  • Wang, R. F. (2005). Beyond imagination: Perspective change problems revisited. Psicológica, 26(1), 25–38.

    MATH  Google Scholar 

  • Wann, J., & Rushton, S. (1994). The illusion of self-motion in virtual-reality environments. Behavioral and Brain Sciences, 17(2), 338–340.

    Google Scholar 

  • Warren, H. C. (1895). Sensations of rotation. Psychological Review, 2(3), 273–276. doi:10.1037/h0074437.

    MathSciNet  Google Scholar 

  • Warren, R., & Wertheim, A. H. (Eds.). (1990). Perception & control of self-motion. Hillsdale/London: Erlbaum.

    Google Scholar 

  • Wertheim, A. H. (1994). Motion perception during self-motion – The direct versus inferential controversy revisited. Behavioral and Brain Sciences, 17(2), 293–311.

    Google Scholar 

  • Willemsen, P., Gooch, A. A., Thompson, W. B., & Creem-Regehr, S. H. (2008). Effects of stereo viewing conditions on distance perception in virtual environments. Presence: Teleoperators and Virtual Environments, 17(1), 91–101. doi:http://dx.doi.org.proxy.lib.sfu.ca/10.1162/pres.17.1.91

  • Wist, E. R., Diener, H. C., Dichgans, J., & Brandt, T. (1975). Perceived distance and perceived speed of self-motion – Linear vs angular velocity. Perception & Psychophysics, 17(6), 549–554.

    Google Scholar 

  • Witmer, B. G., & Kline, P. B. (1998). Judging perceived and traversed distance in virtual environments. Presence: Teleoperators and Virtual Environments, 7(2), 144–167.

    Google Scholar 

  • Witmer, B. G., & Sadowski, W. J. (1998). Nonvisually guided locomotion to a previously viewed target in real and virtual environments. Human Factors, 40(3), 478–488.

    Google Scholar 

  • Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240. doi:10.1162/105474698565686.

    Google Scholar 

  • Witmer, B. G., Jerome, C. J., & Singer, M. J. (2005). The factor structure of the presence questionnaire. Presence: Teleoperators and Virtual Environments, 14(3), 298–312. doi:10.1162/105474605323384654.

    Google Scholar 

  • Wolpert, L. (1990). Field-of-view information for self-motion perception. In R. Warren & A. H. Wertheim (Eds.), Perception & control of self-motion (pp. 101–126). Hillsdale: Erlbaum.

    Google Scholar 

  • Wong, S. C. P., & Frost, B. J. (1981). The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Perception & Psychophysics, 30(3), 228–236.

    Google Scholar 

  • Wood, R. W. (1895). The “Haunted Swing” illusion. Psychological Review, 2(3), 277–278. doi:10.1037/h0073333.

    Google Scholar 

  • Wright, W. G. (2009). Linear vection in virtual environments can be strengthened by discordant inertial input. 31st Annual international conference of the IEEE EMBS (Engineering in Medicine and Biology Society) (pp. 1157–1160). Minneapolis. doi:10.1109/IEMBS.2009.5333425

  • Wright, W. G., DiZio, P., & Lackner, J. R. (2005). Vertical linear self-motion perception during visual and inertial motion: More than weighted summation of sensory inputs. Journal of Vestibular Research: Equilibrium & Orientation, 15(4), 185–195.

    Google Scholar 

Download references

Acknowledgments

This work was funded by Simon Fraser University, the European Community (IST-2001-39223, FET Proactive Initiative, project “POEMS”) and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard E. Riecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riecke, B.E., Schulte-Pelkum, J. (2015). An Integrative Approach to Presence and Self-Motion Perception Research. In: Lombard, M., Biocca, F., Freeman, J., IJsselsteijn, W., Schaevitz, R. (eds) Immersed in Media. Springer, Cham. https://doi.org/10.1007/978-3-319-10190-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10190-3_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10189-7

  • Online ISBN: 978-3-319-10190-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics