Abstract
This paper presents SECPI (Search for Explanations of Clusters of Process Instances), a technique that assists users with understanding a trace clustering solution by finding a minimal set of control-flow characteristics whose absence would prevent a process instance from remaining in its current cluster. As such, the shortcoming of current trace clustering techniques regarding the provision of insight into the computation of a particular partitioning is addressed by learning concise individual rules that clearly explain why a certain instance is part of a cluster.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)
Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management Workshops. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)
Ferreira, D.R., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process mining with sequence clustering: Experiments and findings. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer, Heidelberg (2007)
Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: Towards improving process mining results. In: SDM, SIAM, pp. 401–412. SIAM (2009)
Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved patterns: Towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg (2010)
Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in business processes: Outlier-aware discovery and run-time prediction. Data Knowl. Eng. 70(12), 1005–1029 (2011)
De Weerdt, J., Vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–2720 (2013)
Song, M., Yang, H., Siadat, S., Pechenizkiy, M.: A comparative study of dimensionality reduction techniques to enhance trace clustering performances. Expert Systems with Applications 40(9), 3722–3737 (2013)
Ekanayake, C.C., Dumas, M., García-Bañuelos, L., La Rosa, M.: Slice, mine and dice: Complexity-aware automated discovery of business process models. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 49–64. Springer, Heidelberg (2013)
Martens, D., Provost, F.: Explaining data-driven document classifications. MISQ 38(1), 73–99 (2014)
Bellman, R.E.: Adaptive control processes - A guided tour. Princeton University Press (1961)
Aggarwal, C., Hinneburg, A., Keim, D.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2000)
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
De Weerdt, J., vanden Broucke, S. (2014). SECPI: Searching for Explanations for Clustered Process Instances. In: Sadiq, S., Soffer, P., Völzer, H. (eds) Business Process Management. BPM 2014. Lecture Notes in Computer Science, vol 8659. Springer, Cham. https://doi.org/10.1007/978-3-319-10172-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-10172-9_29
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10171-2
Online ISBN: 978-3-319-10172-9
eBook Packages: Computer ScienceComputer Science (R0)