Nothing Special   »   [go: up one dir, main page]

Skip to main content

SECPI: Searching for Explanations for Clustered Process Instances

  • Conference paper
Business Process Management (BPM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8659))

Included in the following conference series:

Abstract

This paper presents SECPI (Search for Explanations of Clusters of Process Instances), a technique that assists users with understanding a trace clustering solution by finding a minimal set of control-flow characteristics whose absence would prevent a process instance from remaining in its current cluster. As such, the shortcoming of current trace clustering techniques regarding the provision of insight into the computation of a particular partitioning is addressed by learning concise individual rules that clearly explain why a certain instance is part of a cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

    Google Scholar 

  2. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management Workshops. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)

    Google Scholar 

  3. Ferreira, D.R., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process mining with sequence clustering: Experiments and findings. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer, Heidelberg (2007)

    Google Scholar 

  4. Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: Towards improving process mining results. In: SDM, SIAM, pp. 401–412. SIAM (2009)

    Google Scholar 

  5. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved patterns: Towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg (2010)

    Google Scholar 

  6. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in business processes: Outlier-aware discovery and run-time prediction. Data Knowl. Eng. 70(12), 1005–1029 (2011)

    Google Scholar 

  7. De Weerdt, J., Vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–2720 (2013)

    Google Scholar 

  8. Song, M., Yang, H., Siadat, S., Pechenizkiy, M.: A comparative study of dimensionality reduction techniques to enhance trace clustering performances. Expert Systems with Applications 40(9), 3722–3737 (2013)

    Google Scholar 

  9. Ekanayake, C.C., Dumas, M., García-Bañuelos, L., La Rosa, M.: Slice, mine and dice: Complexity-aware automated discovery of business process models. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 49–64. Springer, Heidelberg (2013)

    Google Scholar 

  10. Martens, D., Provost, F.: Explaining data-driven document classifications. MISQ 38(1), 73–99 (2014)

    Google Scholar 

  11. Bellman, R.E.: Adaptive control processes - A guided tour. Princeton University Press (1961)

    Google Scholar 

  12. Aggarwal, C., Hinneburg, A., Keim, D.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2000)

    Google Scholar 

  13. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

De Weerdt, J., vanden Broucke, S. (2014). SECPI: Searching for Explanations for Clustered Process Instances. In: Sadiq, S., Soffer, P., Völzer, H. (eds) Business Process Management. BPM 2014. Lecture Notes in Computer Science, vol 8659. Springer, Cham. https://doi.org/10.1007/978-3-319-10172-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10172-9_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10171-2

  • Online ISBN: 978-3-319-10172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics