Abstract
The analysis of business processes is often challenging not only because of intricate dependencies between process activities but also because of various sources of faults within the activities. The automated detection of potential business process anomalies could immensely help business analysts and other process participants detect and understand the causes of process errors.
This work focuses on temporal anomalies, i.e., anomalies concerning the runtime of activities within a process. To detect such anomalies, we propose a Bayesian model that can be automatically inferred form the Petri net representation of a business process. Probabilistic inference on the above model allows the detection of non-obvious and interdependent temporal anomalies.
This work was partially supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) grant 612052 (SERAMIS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wil, M.P.: van der Aalst. Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)
van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)
van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)
Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance Checking Using Cost-Based Fitness Analysis. In: EDOC 2011, pp. 55–64. IEEE (2011)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Comput. Surv. 41(3), 1–58 (2009)
Cook, J.E., He, C., Ma, C.: Measuring Behavioral Correspondence to a Timed Concurrent Model. In: ICSM 2001, pp. 332–341. IEEE (2001)
de Lima Bezerra, F., Wainer, J.: Algorithms for Anomaly Detection of Traces in Logs of Process Aware Information Systems. Inf. Syst. 38(1), 33–44 (2013)
Governatori, G., Milosevic, Z., Sadiq, S.: Compliance Checking between Business Processes and Business Contracts. In: EDOC 2006, pp. 221–232 (2006)
Grubbs, F.E.: Procedures for Detecting Outlying Observations in Samples. Technometrics 11(1), 1–21 (1969)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann (2006)
Hao, M.C., Keim, D.A., Dayal, U., Schneidewind, J.: Business Process Impact Visualization and Anomaly Detection. Information Visualization 5(1), 15–27 (2006)
Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations for Business Processes – A Survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 46–63. Springer, Heidelberg (2009)
Parzen, E.: On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics 33(3), 1065–1076 (1962)
Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New York (2000)
Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Technische Hochschule Darmstadt (1962)
Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering Stochastic Petri Nets with Arbitrary Delay Distributions From Event Logs. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 International Workshops. LNBIP, vol. 171, pp. 15–27. Springer, Heidelberg (2014)
Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Improving Documentation by Repairing Event Logs. In: Grabis, J., Kirikova, M. (eds.) PoEM 2013. LNBIP, vol. 165, pp. 129–144. Springer, Heidelberg (2013)
Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitoring Real Behavior. Inf. Syst. 33(1), 64–95 (2008)
Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1996)
Simpson, E.H.: The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, Series B, 238–241 (1951)
Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn. Springer (2012)
Wombacher, A., Iacob, M.-E.: Estimating the Processing Time of Process Instances in Semi-structured Processes–A Case Study. In: 2012 IEEE Ninth International Conference on Services Computing (SCC), pp. 368–375. IEEE (2012)
Yeung, D.-Y., Chow, C.: Parzen-Window Network Intrusion Detectors. In: ICPR 2002, vol. 4, pp. 385–388. IEEE (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Rogge-Solti, A., Kasneci, G. (2014). Temporal Anomaly Detection in Business Processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds) Business Process Management. BPM 2014. Lecture Notes in Computer Science, vol 8659. Springer, Cham. https://doi.org/10.1007/978-3-319-10172-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-10172-9_15
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10171-2
Online ISBN: 978-3-319-10172-9
eBook Packages: Computer ScienceComputer Science (R0)