Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Adaptive Bandwidth Selection for Efficient MIA

  • Conference paper
  • First Online:
Constructive Side-Channel Analysis and Secure Design (COSADE 2014)

Abstract

Recently, a generic DPA attack using the mutual information index as the side channel distinguisher has been introduced. Mutual Information Analysis’s (MIA) main interest is its claimed genericity. However, it requires the estimation of various probability density functions (PDF), which is a task that involves the complicated problem of selecting tuning parameters. This problem could be the cause of the lower efficiency of MIA that has been reported. In this paper, we introduce an approach that selects the tuning parameters with the goal of optimizing the performance of MIA. Our approach differs from previous works in that it maximizes the ability of MIA to discriminate one key among all guesses rather than optimizing the accuracy of PDF estimates. Application of this approach to various leakage traces confirms the soundness of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Formally \(l(x)\) is a probability mass function (PMF) because \(X\) is discrete. To simplify notation, we use the generic acronym PDF.

References

  1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Aumonier, S.: Generalized correlation power analysis. In: ECRYPT Workshop on Tools For Cryptanalysis, Kraków, Poland, September 2007

    Google Scholar 

  4. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study. Cryptol. J. 24, 269–291 (2001). Springer, New York

    Article  MathSciNet  Google Scholar 

  6. Prouff, E., Rivain, M.: Theoretical and practical aspects of mutual information-based side channel analysis. Int. J. Adv. Comput. Technol. (IJACT) 2(2), 121–138 (2010)

    MATH  MathSciNet  Google Scholar 

  7. Moradi, A., Mousavi, N., Paar, C., Salmasizadeh, M.: A comparative study of mutual information analysis under a Gaussian assumption. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 193–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Le, T.-H., Berthier, M.: Mutual information analysis under the view of higher-order statistics. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 285–300. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting higher-order DPA attacks: multivariate mutual information analysis. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 221–234. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Flament, F., Guilley, S., Danger, J.L., Elaabid, M.A., Maghrebi, H., Sauvage, L.: About probability density function estimation for side channel analysis. In: Proceedings of International Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE), pp. 15–23 (2010)

    Google Scholar 

  12. Whitnall, C., Oswald, E.: A comprehensive evaluation of mutual information analysis using a fair evaluation framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 316–334. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Veyrat-Charvillon, N., Standaert, F.-X.: Generic side-channel distinguishers: improvements and limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 354–372. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Venelli, A.: Efficient entropy estimation for mutual information analysis using B-splines. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 17–30. Springer, Heidelberg (2010)

    Google Scholar 

  15. Rosenblatt, M.: Remark on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  16. Parzen, E.: On the estimation of a probability density function and the mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sheather, S.J.: Density estimation. Stat. Sci. 19(4), 588–597 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Silverman, B.W., Green, P.J.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    Book  MATH  Google Scholar 

  19. VLSI Research Group and TELECOM ParisTech: The DPA contest (2008/2009)

    Google Scholar 

  20. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-channel distinguishers: an empirical evaluation of statistical tests for Univariate side-channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Messerges, T.S., Dabbish, E.A., Sloan, R.H., Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis attacks on smartcards. In: Proceedings of the USENIX Workshop on Smartcard Technology, pp. 151–162 (1999)

    Google Scholar 

  22. Bévan, R., Knudsen, E.W.: Ways to enhance differential power analysis. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Tiran, S., Maurine, P.: SCA with magnitude squared coherence. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 234–247. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Carbone .

Editor information

Editors and Affiliations

A Appendix

A Appendix

From Sect. 2, modeling leakage consists essentially in choosing a selection function \(L\) to classify the leakage samples \(o(m)\), based on the predictions \(v_{m,k}\) according to \(m \in \mathcal {M}\) and \(k \in \mathcal {K}\), either at the word level or at the bit level (Multi-bit).

  • Word. In view of the additive property of the power consumption in CMOS technologies, traditional leakage models inspired are based on works in [2, 21], aims at mapping activities of components using intermediate values to the physical observations by equal summation of \(w\) bits

    $$\begin{aligned} L:\mathbb {F}_2^w&\rightarrow [0;w]\nonumber \\ v_{m,k}=([v_{m,k}]_1,\ldots ,[v_{m,k}]_w)&\rightarrow L(v_{m,k})={\displaystyle \sum _{b=1}^{w}[v_{m,k}]_b}. \end{aligned}$$
    (16)

    with \([.]_b : \mathbb {F}_2^w \rightarrow \mathbb {F}_2\) being the projection onto the \(i^{th}\) bit. (AES (resp. DES) output Sbox : \(w=8\) (resp. \(w=5\)))

  • Multi-bit. Alternatively, as mentioned in [22], the leakage could be analyzed bit by bit, summing up at the end each equal contribution. The multi-bit version of a distinguisher \(\mathcal {D}_{k,t}\) (\(\mathcal {D} \equiv MI\) in this paper) is calculated as

    $$\begin{aligned} \mathcal {D}_{k,t}={\displaystyle \sum _{b=1}^{w}\left| [\mathcal {D}_{k,t}]_{b}\right| }. \end{aligned}$$
    (17)

    This model seems better adapted to the EM side-channel for which the assumption of additivity may be less plausible. Initially introduced for the distinguisher using the difference of means, it can be extended to other distinguishers [23].

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Carbone, M. et al. (2014). On Adaptive Bandwidth Selection for Efficient MIA. In: Prouff, E. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2014. Lecture Notes in Computer Science(), vol 8622. Springer, Cham. https://doi.org/10.1007/978-3-319-10175-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10175-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10174-3

  • Online ISBN: 978-3-319-10175-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics