Abstract
Sequential learning techniques, such as auto-context, that applies the output of an intermediate classifier as contextual features for its subsequent classifier has shown impressive performance for semantic segmentation. We show that these methods can be interpreted as an approximation technique derived from a Bayesian formulation. To improve the effectiveness of applying this approximation technique, we propose a new sequential learning approach for semantic segmentation that solves a segmentation problem by breaking it into a series of simplified segmentation problems. Sequentially solving each of the simplified problems along the path leads to a more effective way for solving the original segmentation problem. To achieve this goal, we also propose a learning-based method to generate simplified segmentation problems by explicitly controlling the complexities of the modeling classifiers. We report promising results on the 2013 SATA canine leg muscle segmentation dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asman, A., Akhondi-Asl, A., Wang, H., Tustison, N., Avants, B., Warfield, S.K., Landman, B.: MICCAI 2013 segmentation algorithms, theory and applications (SATA) challenge results summary. In: MICCAI 2013 Challenge Workshop on Segmentation: Algorithms, Theory and Applications. Springer (2013)
Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)
Cohen, W.W., Carvalho, V.R.: Stacked sequential learning. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, pp. 671–676 (2005)
Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)
Heckemann, R., Hajnal, J., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33, 115–126 (2006)
Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)
Munoz, D., Bagnell, J.A., Hebert, M.: Stacked hierarchical labeling. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 57–70. Springer, Heidelberg (2010)
Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D.B., Maurer Jr., C.R.: Quo vadis, atlas-based segmentation? In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds.) Volume III: Registration Models. Topics in Biomedical Engineering International Book Series, pp. 435–486. Springer, US (2005)
Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. on PAMI 32(10), 1744–1757 (2010)
Tu, Z., Zheng, S., Yuille, A., Reiss, A., Dutton, R., Lee, A., Galaburda, A., Dinov, I., Thompson, P., Toga, A.: Automated extraction of the cortical sulci based on a supervised learning approach. IEEE TMI 26(4), 541–552 (2007)
Van Leemput, K., Benner, T., Bakkour, A., Wiggins, G., Wald, L., Augustinack, J., Dickerson, B., Golland, P., Fischl, B.: Automated segmentation of hippocampal subfields from ultra-high resolution in vivo mri. Hippocampus 19, 549–557 (2009)
Wang, H., Suh, J.W., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas segmentation with joint label fusion. IEEE Trans. on PAMI 35(3), 611–623 (2013)
Wang, H., Das, S.R., Suh, J.W., Altinay, M., Pluta, J., Craige, C., Avants, B.B., Yushkevich, P.A.: A learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain. Neuroimage 55(3), 968–985 (2011)
Wang, H., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion and corrective learning - an open source implementation. Front. neuroinformatics 7, 27 (2013)
Wolpert, D.H.: Stacked generalization. Neural netw. 5(2), 241–259 (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, H., Cao, Y., Syed-Mahmood, T.F. (2015). Finding a Path for Segmentation Through Sequential Learning. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-19992-4_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19991-7
Online ISBN: 978-3-319-19992-4
eBook Packages: Computer ScienceComputer Science (R0)