Nothing Special   »   [go: up one dir, main page]

Skip to main content

Brain Transfer: Spectral Analysis of Cortical Surfaces and Functional Maps

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Included in the following conference series:

Abstract

The study of brain functions using fMRI often requires an accurate alignment of cortical data across a population. Particular challenges are surface inflation for cortical visualizations and measurements, and surface matching or alignment of functional data on surfaces for group-level analyses. Present methods typically treat each step separately and can be computationally expensive. For instance, smoothing and matching of cortices often require several hours. Conventional methods also rely on anatomical features to drive the alignment of functional data between cortices, whereas anatomy and function can vary across individuals. To address these issues, we propose BrainTransfer, a spectral framework that unifies cortical smoothing, point matching with confidence regions, and transfer of functional maps, all within minutes of computation. Spectral methods decompose shapes into intrinsic geometrical harmonics, but suffer from the inherent instability of eigenbasis. This limits their accuracy when matching eigenbasis, and prevents the spectral transfer of functions. Our contributions consist of, first, the optimization of a spectral transformation matrix, which combines both, point correspondence and change of eigenbasis, and second, focused harmonics, which localize the spectral decomposition of functional data. BrainTransfer enables the transfer of surface functions across interchangeable cortical spaces, accounts for localized confidence, and gives a new way to perform statistics directly on surfaces. Benefits of spectral transfers are illustrated with a variability study on shape and functional data. Matching accuracy on retinotopy is increased over conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Talairach, J., et al.: Atlas stereotaxique du telencephale. Masson, Paris (1967)

    Google Scholar 

  2. Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., Zilles, K.: Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage (2000)

    Google Scholar 

  3. Drury, H., Van Essen, D., Joshi, S., Miller, M.: Analysis and comparison of areal partitioning schemes using 2-D fluid deformations. NeuroImage (1996)

    Google Scholar 

  4. Thompson, P., Toga, A.W.: A surface-based technique for warping three-dimensional images of the brain. TMI (1996)

    Google Scholar 

  5. Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for cortical surface. HBM (1999)

    Google Scholar 

  6. Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B.T., Mohlberg, H., Amunts, K.: Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex, Zilles (2007)

    Google Scholar 

  7. Yeo, T., Sabuncu, M., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. TMI 29, 650–668 (2010)

    Google Scholar 

  8. Beg, F., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV 61, 139–157 (2005)

    Article  Google Scholar 

  9. Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. MedIA 13, 793–808 (2009)

    Google Scholar 

  11. Segonne, F., Pacheco, J., Fischl, B.: Geometrically accurate Topology-Correction of cortical surfaces using nonseparating loops. TMI 26, 518–529 (2007)

    Google Scholar 

  12. Haxby, J.V., et al.: A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron 72, 404–416 (2011)

    Article  Google Scholar 

  13. Chung, F.: Spectral Graph Theory. AMS (1997)

    Google Scholar 

  14. Lombaert, H., Grady, L., Polimeni, J., Cheriet, F.: Feature oriented correspondence using spectral regularization, a method for accurate surface matching. PAMI (2012)

    Google Scholar 

  15. Lombaert, H., Sporring, J., Siddiqi, K.: Diffeomorphic spectral matching of cortical surfaces. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 376–389. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. IJCV (2009)

    Google Scholar 

  17. Niethammer, M., Reuter, M., Wolter, F.-E., Bouix, S., Peinecke, N., Koo, M.-S., Shenton, M.E.: Global medical shape analysis using the Laplace-Beltrami spectrum. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 850–857. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Shi, Y., Lai, R., Kern, K., Sicotte, N.L., Dinov, I.D., Toga, A.W.: Harmonic surface mapping with Laplace-Beltrami eigenmaps. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 147–154. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: CVPR (2008)

    Google Scholar 

  20. Jain, V., Zhang, H.: Robust 3D Shape Correspondence in the Spectral Domain. In: CSMA (2006)

    Google Scholar 

  21. Shi, Y., Lai, R., Wang, D.J.J., Pelletier, D., Mohr, D., Sicotte, N., Toga, A.W.: Metric optimization for surface analysis in the Laplace-Beltrami space. TMI 33(7), 1447–1463 (2014)

    Google Scholar 

  22. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. CG 27(2), 251–260 (2008)

    Google Scholar 

  23. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps. ACM Trans. Graph. 31(4), 30 (2012)

    Article  Google Scholar 

  24. Kovnatsky, A., et al.: Coupled quasi-harmonic bases. CG Forum 32, 439–448 (2013)

    Google Scholar 

  25. Chung, R., Dalton, M., Davidson, R., Alexander, A.: Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage, Evans (2005)

    Google Scholar 

  26. Anqi, Q., Bitouk, D., Miller, M.I.: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. TMI 25(10), 1296–1306 (2006)

    Google Scholar 

  27. Grady, L., Polimeni, J.R.: Discrete Calculus: Analysis on Graphs. Springer, Heidelberg (2010)

    Book  Google Scholar 

  28. Styner, M., Oguz, I., Xu, S., Brechbühler, S., et al.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight (2006)

    Google Scholar 

  29. Gao, Y., Riklin, R.-R., Bouix, S.: Shape analysis, a field in need of careful validation. HBM (2014)

    Google Scholar 

  30. Wang, L., Mruczek, R.E.B., Arcaro, M.J., Kastner, S.: Probabilistic maps of visual topography in human cortex. Cerebral Cortex (2014)

    Google Scholar 

  31. Lombaert, H., Grady, L., Pennec, X., Ayache, N., Cheriet, F.: Spectral Demons – image registration via global spectral correspondence. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 30–44. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgment

This research is partically funded by the ERC Advanced Grant MedYMA, and the Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herve Lombaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lombaert, H., Arcaro, M., Ayache, N. (2015). Brain Transfer: Spectral Analysis of Cortical Surfaces and Functional Maps. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics