Abstract
The study of brain functions using fMRI often requires an accurate alignment of cortical data across a population. Particular challenges are surface inflation for cortical visualizations and measurements, and surface matching or alignment of functional data on surfaces for group-level analyses. Present methods typically treat each step separately and can be computationally expensive. For instance, smoothing and matching of cortices often require several hours. Conventional methods also rely on anatomical features to drive the alignment of functional data between cortices, whereas anatomy and function can vary across individuals. To address these issues, we propose BrainTransfer, a spectral framework that unifies cortical smoothing, point matching with confidence regions, and transfer of functional maps, all within minutes of computation. Spectral methods decompose shapes into intrinsic geometrical harmonics, but suffer from the inherent instability of eigenbasis. This limits their accuracy when matching eigenbasis, and prevents the spectral transfer of functions. Our contributions consist of, first, the optimization of a spectral transformation matrix, which combines both, point correspondence and change of eigenbasis, and second, focused harmonics, which localize the spectral decomposition of functional data. BrainTransfer enables the transfer of surface functions across interchangeable cortical spaces, accounts for localized confidence, and gives a new way to perform statistics directly on surfaces. Benefits of spectral transfers are illustrated with a variability study on shape and functional data. Matching accuracy on retinotopy is increased over conventional methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Talairach, J., et al.: Atlas stereotaxique du telencephale. Masson, Paris (1967)
Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., Zilles, K.: Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage (2000)
Drury, H., Van Essen, D., Joshi, S., Miller, M.: Analysis and comparison of areal partitioning schemes using 2-D fluid deformations. NeuroImage (1996)
Thompson, P., Toga, A.W.: A surface-based technique for warping three-dimensional images of the brain. TMI (1996)
Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for cortical surface. HBM (1999)
Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B.T., Mohlberg, H., Amunts, K.: Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex, Zilles (2007)
Yeo, T., Sabuncu, M., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. TMI 29, 650–668 (2010)
Beg, F., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV 61, 139–157 (2005)
Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)
Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. MedIA 13, 793–808 (2009)
Segonne, F., Pacheco, J., Fischl, B.: Geometrically accurate Topology-Correction of cortical surfaces using nonseparating loops. TMI 26, 518–529 (2007)
Haxby, J.V., et al.: A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron 72, 404–416 (2011)
Chung, F.: Spectral Graph Theory. AMS (1997)
Lombaert, H., Grady, L., Polimeni, J., Cheriet, F.: Feature oriented correspondence using spectral regularization, a method for accurate surface matching. PAMI (2012)
Lombaert, H., Sporring, J., Siddiqi, K.: Diffeomorphic spectral matching of cortical surfaces. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 376–389. Springer, Heidelberg (2013)
Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. IJCV (2009)
Niethammer, M., Reuter, M., Wolter, F.-E., Bouix, S., Peinecke, N., Koo, M.-S., Shenton, M.E.: Global medical shape analysis using the Laplace-Beltrami spectrum. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 850–857. Springer, Heidelberg (2007)
Shi, Y., Lai, R., Kern, K., Sicotte, N.L., Dinov, I.D., Toga, A.W.: Harmonic surface mapping with Laplace-Beltrami eigenmaps. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 147–154. Springer, Heidelberg (2008)
Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: CVPR (2008)
Jain, V., Zhang, H.: Robust 3D Shape Correspondence in the Spectral Domain. In: CSMA (2006)
Shi, Y., Lai, R., Wang, D.J.J., Pelletier, D., Mohr, D., Sicotte, N., Toga, A.W.: Metric optimization for surface analysis in the Laplace-Beltrami space. TMI 33(7), 1447–1463 (2014)
Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. CG 27(2), 251–260 (2008)
Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps. ACM Trans. Graph. 31(4), 30 (2012)
Kovnatsky, A., et al.: Coupled quasi-harmonic bases. CG Forum 32, 439–448 (2013)
Chung, R., Dalton, M., Davidson, R., Alexander, A.: Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage, Evans (2005)
Anqi, Q., Bitouk, D., Miller, M.I.: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. TMI 25(10), 1296–1306 (2006)
Grady, L., Polimeni, J.R.: Discrete Calculus: Analysis on Graphs. Springer, Heidelberg (2010)
Styner, M., Oguz, I., Xu, S., Brechbühler, S., et al.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight (2006)
Gao, Y., Riklin, R.-R., Bouix, S.: Shape analysis, a field in need of careful validation. HBM (2014)
Wang, L., Mruczek, R.E.B., Arcaro, M.J., Kastner, S.: Probabilistic maps of visual topography in human cortex. Cerebral Cortex (2014)
Lombaert, H., Grady, L., Pennec, X., Ayache, N., Cheriet, F.: Spectral Demons – image registration via global spectral correspondence. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 30–44. Springer, Heidelberg (2012)
Acknowledgment
This research is partically funded by the ERC Advanced Grant MedYMA, and the Research Council of Canada (NSERC).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lombaert, H., Arcaro, M., Ayache, N. (2015). Brain Transfer: Spectral Analysis of Cortical Surfaces and Functional Maps. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-19992-4_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19991-7
Online ISBN: 978-3-319-19992-4
eBook Packages: Computer ScienceComputer Science (R0)