Abstract
The error correcting output code (ECOC) technique is a genesral framework to solve the multi-class problems using binary classifiers. The key problem in this approach is how to construct the optimal ECOC codewords i.e. the codewords which maximize the recognition ratio of the final classifier. There are several methods described in the literature to solve this problem. All these methods try to maximize the minimal Hamming distance between the generated codewords. In this paper we are showing another approach based both on the average Hamming distance and the estimated misclassification error of the binary classifiers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allwein, E., Schapire, R., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2002)
Alpaydin, E., Mayoraz, E.: Learning error-correcting output codes from data. In: International Conference on Artificial Neural Networks (ICANN99), pp. 743–748 (1999)
Bologna, G., Appel, R.D.: A comparison study on protein fold recognition. In: Proceedings of the ninth ICONIP, vol. 5, pp. 2492–2496, Singapore, 18–22 November 2002
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001). Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm
Chmielnicki, W., Stapor, K.: Protein fold recognition with combined SVM-RDA classifier. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS, vol. 6076, pp. 162–169. Springer, Heidelberg (2010)
Chmielnicki, W., Stapor, K.: A new approach to multi-class SVM-based classification using error correcting output codes. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems 4. AISC, pp. 499–506. Springer, Heidelberg (2011)
Chmielnicki, W., Roterman-Konieczna, I., Stapor, K.: An improved protein fold recognition with support vector machines. Expert Syst. 20(2), 200–211 (2012)
Chung, I.F., Huang, C.D., Shen, Y.H., Lin, C.T.: Recognition of structure classification of protein folding by NN and SVM hierarchical learning architecture. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.) ICANN/ICONIP 2003. LNCS, vol. 2714, pp. 1159–1167. Springer, Heidelberg (2003)
Dietterich, T.G., Bakiri, G.: Solving multiclass problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)
Ding, C.H., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349–358 (2001)
Dubchak, I., Muchnik, I., Kim, S.H.: Protein folding class predictor for SCOP: approach based on global descriptors. In: Proceedings ISMB (1997)
Escalcera, S., Pujol, O., Radeva, P.: Error-correcting output code library. J. Mach. Learn. Res. 11, 661–664 (2010)
Fanty, M., Cole, R.: Spoken letter recognition. In: Advances in Neural Information Processing Systems 3 (1991)
Fei, B., Liu, J.: Binary tree of SVM: a new fast multiclass training and classification algorithm. IEEE Trans. Neural Netw. 17(3), 696–704 (2006)
Glomb, P., Romaszewski, M., Opozda, S., Sochan, A.: Choosing and modeling the hand gesture database for a natural user interface. In: Efthimiou, E., Kouroupetroglou, G., Fotinea, S.-E. (eds.) GW 2011. LNCS, vol. 7206, pp. 24–35. Springer, Heidelberg (2011)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Ann. Stat. 26(2), 451–471 (1998)
Kijsirikul, B., Ussivakul, N.: Multiclass support vector machines using adaptive directed acyclic graph. In: Proceedings of the International Joint Conference on Neural Networks, pp. 980–985 (2002)
Kuncheva, L.I.: Using diversity measures for generating error-correcting output codes in classifier ensembles. Pattern Recogn. Lett. 26, 83–90 (2005)
Lorena, A.C., Carvalho, A.C., Gama, J.M.: A review on the combination of binary classifiers in multiclass problems. Artif. Intell. Rev. 30(1–4), 19–37 (2008)
Lorena, A.C., Carvalho, A.C.: Building binary-tree-based multiclsss classifiers using separability measures. Neurocomputing 73(16—-18), 2837–2845 (2010)
Nanni, L.: A novel ensemble of classifiers for protein fold recognition. Neurocomputing 69, 2434–2437 (2006)
Okun, O.: Protein fold recognition with k-local hyperplane distance nearest neighbor algorithm. In: Proceedings of the Second European Workshop on Data Mining and Text Mining in Bioinformatics, pp. 51–57, Pisa, 24 September 2004
Ou, G., Murphey, Y.L.: Multi-class pattern classification using neural networks. Pattern Recogn. 40, 4–18 (2006)
Pal, N.R., Chakraborty, D.: Some new features for protein fold recognition. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714. Springer, Heidelberg (2003)
Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Proceedings of Neural Information Processing Systems, pp. 547–553 (2000)
Sáez, J.A., Galar, M., Luengo, J., Herrera, F.: A first study on decomposition strategies with data with class noise using decision trees. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 25–35. Springer, Heidelberg (2012)
Sanya, L., Zhi, L., Jianwen, S., Lin, L.: Application of synergic neural network in online writeprint identification. Int. J. Digital Technol. Appl. 5(3), 126–135 (2011)
Silva, P.F.B., Marçal, A.R.S., da Silva, R.M.A.: Evaluation of features for leaf discrimination. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 197–204. Springer, Heidelberg (2013)
UCI machine learning repository (2014). http://archive.ics.uci.edu/ml/datasets.html
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Vural, V., Dy, J.G.: A hierarchical method for multi-class support vector machines. In: Proceedings of the twenty-first ICML, pp. 831–838 (2004)
Windeatt, T., Ghaderi, R.: Coding and decoding for multi-class learning problems. Inf. Fusion 4(1), 11–21 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chmielnicki, W. (2015). Creating Effective Error Correcting Output Codes for Multiclass Classification. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2015. Lecture Notes in Computer Science(), vol 9121. Springer, Cham. https://doi.org/10.1007/978-3-319-19644-2_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-19644-2_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19643-5
Online ISBN: 978-3-319-19644-2
eBook Packages: Computer ScienceComputer Science (R0)