Nothing Special   »   [go: up one dir, main page]

Skip to main content

Creating Effective Error Correcting Output Codes for Multiclass Classification

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9121))

Included in the following conference series:

  • 2130 Accesses

Abstract

The error correcting output code (ECOC) technique is a genesral framework to solve the multi-class problems using binary classifiers. The key problem in this approach is how to construct the optimal ECOC codewords i.e. the codewords which maximize the recognition ratio of the final classifier. There are several methods described in the literature to solve this problem. All these methods try to maximize the minimal Hamming distance between the generated codewords. In this paper we are showing another approach based both on the average Hamming distance and the estimated misclassification error of the binary classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allwein, E., Schapire, R., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2002)

    MathSciNet  Google Scholar 

  2. Alpaydin, E., Mayoraz, E.: Learning error-correcting output codes from data. In: International Conference on Artificial Neural Networks (ICANN99), pp. 743–748 (1999)

    Google Scholar 

  3. Bologna, G., Appel, R.D.: A comparison study on protein fold recognition. In: Proceedings of the ninth ICONIP, vol. 5, pp. 2492–2496, Singapore, 18–22 November 2002

    Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001). Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  5. Chmielnicki, W., Stapor, K.: Protein fold recognition with combined SVM-RDA classifier. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS, vol. 6076, pp. 162–169. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Chmielnicki, W., Stapor, K.: A new approach to multi-class SVM-based classification using error correcting output codes. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems 4. AISC, pp. 499–506. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Chmielnicki, W., Roterman-Konieczna, I., Stapor, K.: An improved protein fold recognition with support vector machines. Expert Syst. 20(2), 200–211 (2012)

    Google Scholar 

  8. Chung, I.F., Huang, C.D., Shen, Y.H., Lin, C.T.: Recognition of structure classification of protein folding by NN and SVM hierarchical learning architecture. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.) ICANN/ICONIP 2003. LNCS, vol. 2714, pp. 1159–1167. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Dietterich, T.G., Bakiri, G.: Solving multiclass problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)

    MATH  Google Scholar 

  10. Ding, C.H., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349–358 (2001)

    Article  Google Scholar 

  11. Dubchak, I., Muchnik, I., Kim, S.H.: Protein folding class predictor for SCOP: approach based on global descriptors. In: Proceedings ISMB (1997)

    Google Scholar 

  12. Escalcera, S., Pujol, O., Radeva, P.: Error-correcting output code library. J. Mach. Learn. Res. 11, 661–664 (2010)

    Google Scholar 

  13. Fanty, M., Cole, R.: Spoken letter recognition. In: Advances in Neural Information Processing Systems 3 (1991)

    Google Scholar 

  14. Fei, B., Liu, J.: Binary tree of SVM: a new fast multiclass training and classification algorithm. IEEE Trans. Neural Netw. 17(3), 696–704 (2006)

    Article  Google Scholar 

  15. Glomb, P., Romaszewski, M., Opozda, S., Sochan, A.: Choosing and modeling the hand gesture database for a natural user interface. In: Efthimiou, E., Kouroupetroglou, G., Fotinea, S.-E. (eds.) GW 2011. LNCS, vol. 7206, pp. 24–35. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Ann. Stat. 26(2), 451–471 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kijsirikul, B., Ussivakul, N.: Multiclass support vector machines using adaptive directed acyclic graph. In: Proceedings of the International Joint Conference on Neural Networks, pp. 980–985 (2002)

    Google Scholar 

  18. Kuncheva, L.I.: Using diversity measures for generating error-correcting output codes in classifier ensembles. Pattern Recogn. Lett. 26, 83–90 (2005)

    Article  Google Scholar 

  19. Lorena, A.C., Carvalho, A.C., Gama, J.M.: A review on the combination of binary classifiers in multiclass problems. Artif. Intell. Rev. 30(1–4), 19–37 (2008)

    Article  Google Scholar 

  20. Lorena, A.C., Carvalho, A.C.: Building binary-tree-based multiclsss classifiers using separability measures. Neurocomputing 73(16—-18), 2837–2845 (2010)

    Article  Google Scholar 

  21. Nanni, L.: A novel ensemble of classifiers for protein fold recognition. Neurocomputing 69, 2434–2437 (2006)

    Article  Google Scholar 

  22. Okun, O.: Protein fold recognition with k-local hyperplane distance nearest neighbor algorithm. In: Proceedings of the Second European Workshop on Data Mining and Text Mining in Bioinformatics, pp. 51–57, Pisa, 24 September 2004

    Google Scholar 

  23. Ou, G., Murphey, Y.L.: Multi-class pattern classification using neural networks. Pattern Recogn. 40, 4–18 (2006)

    Article  Google Scholar 

  24. Pal, N.R., Chakraborty, D.: Some new features for protein fold recognition. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714. Springer, Heidelberg (2003)

    Google Scholar 

  25. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Proceedings of Neural Information Processing Systems, pp. 547–553 (2000)

    Google Scholar 

  26. Sáez, J.A., Galar, M., Luengo, J., Herrera, F.: A first study on decomposition strategies with data with class noise using decision trees. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 25–35. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Sanya, L., Zhi, L., Jianwen, S., Lin, L.: Application of synergic neural network in online writeprint identification. Int. J. Digital Technol. Appl. 5(3), 126–135 (2011)

    Google Scholar 

  28. Silva, P.F.B., Marçal, A.R.S., da Silva, R.M.A.: Evaluation of features for leaf discrimination. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 197–204. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  29. UCI machine learning repository (2014). http://archive.ics.uci.edu/ml/datasets.html

  30. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  31. Vural, V., Dy, J.G.: A hierarchical method for multi-class support vector machines. In: Proceedings of the twenty-first ICML, pp. 831–838 (2004)

    Google Scholar 

  32. Windeatt, T., Ghaderi, R.: Coding and decoding for multi-class learning problems. Inf. Fusion 4(1), 11–21 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiesław Chmielnicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chmielnicki, W. (2015). Creating Effective Error Correcting Output Codes for Multiclass Classification. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2015. Lecture Notes in Computer Science(), vol 9121. Springer, Cham. https://doi.org/10.1007/978-3-319-19644-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19644-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19643-5

  • Online ISBN: 978-3-319-19644-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics