Nothing Special   »   [go: up one dir, main page]

Skip to main content

Resampling Multilabel Datasets by Decoupling Highly Imbalanced Labels

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9121))

Included in the following conference series:

Abstract

Multilabel classification is a task that has been broadly studied in late years. However, how to face learning from imbalanced multilabel datasets (MLDs) has only been addressed latterly. In this regard, a few proposals can be found in the literature, most of them based on resampling techniques adapted from the traditional classification field. The success of these methods varies extraordinarily depending on the traits of the chosen MLDs.

One of the characteristics which significantly influences the behavior of multilabel resampling algorithms is the joint appearance of minority and majority labels in the same instances. It was demonstrated that MLDs with a high level of concurrence among imbalanced labels could hardly benefit from resampling methods. This paper proposes an original resampling algorithm, called REMEDIAL, which is not based on removing majority instances nor creating minority ones, but on a procedure to decouple highly imbalanced labels. As will be experimentally demonstrated, this is an interesting approach for certain MLDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Visualizing all label interactions in an MLD is, in some cases, almost impossible due to the large number of labels. For that reason, only the most frequent labels and the most rare ones for each MLD are represented in these plots. High resolution version of these plots can be found at http://simidat.ujaen.es/remedial and they can be generated using the mldr R package [32].

References

  1. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, Ch. 34, pp. 667–685. Springer, Boston (2010). doi:10.1007/978-0-387-09823-4_34

    Google Scholar 

  2. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30115-8_22

    Chapter  Google Scholar 

  3. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Audio Speech Lang. Process. 16(2), 467–476 (2008). doi:10.1109/TASL.2007.913750

    Google Scholar 

  4. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002). doi:10.1007/3-540-47979-1_7

    Chapter  Google Scholar 

  5. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6(1), 1–6 (2004). doi:10.1145/1007730.1007733

    Google Scholar 

  6. García, V., Sánchez, J., Mollineda, R.: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl. Based Syst. 25(1), 13–21 (2012). http://dx.doi.org/10.1016/j.knosys.2011.06.013

    Google Scholar 

  7. Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: A first approach to deal with imbalance in multi-label datasets. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS, vol. 8073, pp. 150–160. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40846-5_16

    Chapter  Google Scholar 

  8. Giraldo-Forero, A.F., Jaramillo-Garzón, J.A., Ruiz-Muñoz, J.F., Castellanos-Domínguez, C.G.: Managing imbalanced data sets in multi-label problems: a case study with the SMOTE algorithm. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part I. LNCS, vol. 8258, pp. 334–342. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41822-8_42

    Chapter  Google Scholar 

  9. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: Measures and random resampling algorithms, Neurocomputing to be published

    Google Scholar 

  10. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLeNN: a first approach to heuristic multilabel undersampling. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 1–9. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10840-7_1

    Chapter  Google Scholar 

  11. Tahir, M.A., Kittler, J., Yan, F.: Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recogn. 45(10), 3738–3750 (2012). doi:10.1016/j.patcog.2012.03.014

    Google Scholar 

  12. Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recogn. Lett. 33(5), 513–523 (2012). doi:10.1016/j.patrec.2011.10.019

    Google Scholar 

  13. Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: Concurrence among imbalanced labels and its influence on multilabel resampling algorithms. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 110–121. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  14. Diplaris, S., Tsoumakas, G., Mitkas, P.A., Vlahavas, I.P.: Protein classification with multiple algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448–456. Springer, Heidelberg (2005). doi:10.1007/11573036_42

    Chapter  Google Scholar 

  15. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Dietterich, G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, vol. 14, pp. 681–687. MIT Press, Cambridge (2001)

    Google Scholar 

  16. Crammer, K., Dredze, M., Ganchev, K., Talukdar, P.P., Carroll, S.: Automatic code assignment to medical text. In: Proceedings of the Workshop on Biological, Translational, and Clinical Language Processing, BioNLP 2007. Prague, Czech Republic, pp. 129–136 (2007)

    Google Scholar 

  17. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24775-3_5

    Chapter  Google Scholar 

  18. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004). doi:10.1016/j.patcog.2004.03.009

    Google Scholar 

  19. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333–359 (2011). doi:10.1007/s10994-011-5256-5

    MathSciNet  Google Scholar 

  20. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of the ECML/PKDD Workshop on Mining Multidimensional Data, MMD 2008. Antwerp, Belgium, pp. 30–44 (2008)

    Google Scholar 

  21. Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007). doi:10.1016/j.patcog.2006.12.019

    MATH  Google Scholar 

  22. Clare, A.J., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, p. 42. Springer, Heidelberg (2001). doi:10.1007/3-540-44794-6_4

    Chapter  Google Scholar 

  23. Zhang, M.-L.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006). doi:10.1109/TKDE.2006.162

    Google Scholar 

  24. Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014). doi:10.1109/TKDE.2013.39

    Google Scholar 

  25. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). doi:10.1613/jair.953

    MATH  Google Scholar 

  26. Kotsiantis, S.B., Pintelas, P.E.: Mixture of expert agents for handling imbalanced data sets. Ann. Math. Comput. Teleinformatics 1, 46–55 (2003)

    Google Scholar 

  27. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013). doi:10.1016/j.ins.2013.07.007

    Google Scholar 

  28. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Mach. Learn. 42, 203–231 (2001). doi:10.1023/A:1007601015854

    MATH  Google Scholar 

  29. He, J., Gu, H., Liu, W.: Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites. PloS one 7(6), 7155 (2012). doi:10.1371/journal.pone.0037155

    Google Scholar 

  30. Li, C., Shi, G.: Improvement of learning algorithm for the multi-instance multi-label rbf neural networks trained with imbalanced samples. J. Inf. Sci. Eng. 29(4), 765–776 (2013)

    Google Scholar 

  31. Tepvorachai, G., Papachristou, C.: Multi-label imbalanced data enrichment process in neural net classifier training. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008, pp. 1301–1307 (2008). doi:10.1109/IJCNN.2008.4633966

  32. Charte, F., Charte, F.D.: How to work with multilabel datasets in R using the mldr package. doi:10.6084/m9.figshare.1356035

  33. Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 76(2–3), 211–225 (2009). doi:10.1007/s10994-009-5127-5

    Google Scholar 

Download references

Acknowledgments

F. Charte is supported by the Spanish Ministry of Education under the FPU National Program (Ref. AP2010-0068). This work was partially supported by the Spanish Ministry of Science and Technology under projects TIN2011-28488 and TIN2012-33856, and the Andalusian regional projects P10-TIC-06858 and P11-TIC-7765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Charte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Charte, F., Rivera, A., del Jesus, M.J., Herrera, F. (2015). Resampling Multilabel Datasets by Decoupling Highly Imbalanced Labels. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2015. Lecture Notes in Computer Science(), vol 9121. Springer, Cham. https://doi.org/10.1007/978-3-319-19644-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19644-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19643-5

  • Online ISBN: 978-3-319-19644-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics