Abstract
The Internet transports data generated by programs which cause various phenomena in IP flows. By means of machine learning techniques, we can automatically discern between flows generated by different traffic sources and gain a more informed view of the Internet.
In this paper, we optimize Waterfall, a promising architecture for cascade traffic classification. We present a new heuristic approach to optimal design of cascade classifiers. On the example of Waterfall, we show how to determine the order of modules in a cascade so that the classification speed is maximized, while keeping the number of errors and unlabeled flows at minimum. We validate our method experimentally on 4 real traffic datasets, showing significant improvements over random cascades.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Downloaded from http://www.ing.unibs.it/ntw/tools/traces/.
- 2.
References
Karagiannis, T., Papagiannaki, K., Faloutsos, M.: Blinc: multilevel traffic classification in the dark. In: ACM SIGCOMM Computer Communication Review, vol. 35, pp. 229–240. ACM (2005)
Finamore, A., Mellia, M., Meo, M., Rossi, D.: KISS: stochastic packet inspection classifier for UDP traffic. IEEE/ACM Trans. Netw. 18(5), 1505–1515 (2010)
Bermolen, P., Mellia, M., Meo, M., Rossi, D., Valenti, S.: Abacus: accurate behavioral classification of P2P-TV traffic. Comp. Netw. 55(6), 1394–1411 (2011)
Nguyen, T.T., Armitage, G.: A survey of techniques for internet traffic classification using machine learning. Commun. Surv. Tutor. IEEE 10(4), 56–76 (2008)
Callado, A., Kamienski, C., Szabó, G., Gero, B., Kelner, J., Fernandes, S., Sadok, D.: A survey on internet traffic identification. Commun. Surv. Tutor. IEEE 11(3), 37–52 (2009)
Dainotti, A., Pescape, A., Claffy, K.C.: Issues and future directions in traffic classification. Netw. IEEE 26(1), 35–40 (2012)
Foremski, P.: On different ways to classify Internet traffic: a short review of selected publications. Theor. Appl. Inf. 25(2), 119–136 (2013)
Dainotti, A., Pescapé, A., Sansone, C.: Early classification of network traffic through multi-classification. In: Domingo-Pascual, J., Shavitt, Y., Uhlig, S. (eds.) TMA 2011. LNCS, vol. 6613, pp. 122–135. Springer, Heidelberg (2011)
Foremski, P., Callegari, C., Pagano, M.: Waterfall: rapid identification of IP flows using cascade classification. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2014. CCIS, vol. 431, pp. 14–23. Springer, Heidelberg (2014)
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley (2004)
Alpaydin, E., Kaynak, C.: Cascading classifiers. Kybernetika 34(4), 369–374 (1998)
Chellapilla, K., Shilman, M., Simard, P.: Optimally combining a cascade of classifiers. Proceed. SPIE 6067, 207–214 (2006)
Abdelazeem, S.: A greedy approach for building classification cascades. In: Seventh International Conference on Machine Learning and Applications, ICMLA 2008, pp. 115–120. IEEE (2008)
Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)
Foremski, P., Callegari, C., Pagano, M.: DNS-class: immediate classification of IP flows using DNS. Int. J. Netw. Manag. 24(4), 272–288 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Foremski, P., Callegari, C., Pagano, M. (2015). Waterfall Traffic Identification: Optimizing Classification Cascades. In: Gaj, P., Kwiecień, A., Stera, P. (eds) Computer Networks. CN 2015. Communications in Computer and Information Science, vol 522. Springer, Cham. https://doi.org/10.1007/978-3-319-19419-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-19419-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19418-9
Online ISBN: 978-3-319-19419-6
eBook Packages: Computer ScienceComputer Science (R0)