Abstract
In the paper, the parallel realization of the Boltzmann Restricted Machine (RBM) is proposed. The implementation intends to use multicore architectures of modern CPUs and Intel Xeon Phi coprocessor. The learning procedure is based on the matrix description of RBM, where the learning samples are grouped into packages, and represented as matrices. The influence of the package size on convergence of learning, as well as on performance of computation, are studied for various number of threads, using conventional CPU and Intel Phi architecures. Our research confirms a potential usefulness of MIC parallel architecture for implementation of RBM and similar algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bilski, J., Nowicki, R., Scherer, R., Litwiński, S.: Application of signal processor TMS320c30 to neural networks realisation. In: Proceedings of the Second Conference Neural Networks and Their Applications, Czêstochowa, pp. 53–59 (1996)
Bilski, J., Smolag, J.: Parallel architectures for learning the RTRN and Elman dynamic neural networks. IEEE Transactions on Parallel and Distributed Systems PP(99) (2014)
Bilski, J., Litwiński, S., Smoląg, J.: Parallel realisation of QR algorithm for neural networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidelberg (2004)
Bilski, J., Smoląg, J., Galushkin, A.I.: The parallel approach to the conjugate gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 12–21. Springer, Heidelberg (2014)
Bilski, J., Smoląg, J.: Parallel realisation of the recurrent RTRN neural network learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)
Bilski, J., Smoląg, J.: Parallel realisation of the recurrent elman neural network learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 19–25. Springer, Heidelberg (2010)
Bilski, J., Smoląg, J.: Parallel realisation of the recurrent multi layer perceptron learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 12–20. Springer, Heidelberg (2012)
Bilski, J., Smoląg, J.: Parallel approach to learning of the recurrent Jordan neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 32–40. Springer, Heidelberg (2013)
Chu, J.L., Krzyzak, A.: The recognition of partially occluded objects with support vector machines and convolutional neural networks and deep belief networks. Journal of Artificial Intelligence and Soft Computing Research 4(1), 5–19 (2014)
Intel Corporation: Intel Xeon Phi Coprocessor System Software Developer’s Guide. Technical report, The Intel Corporation (June 2013)
Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proc. IEEE International Joint Conference on Neural Networks (IJCNN), vol. 3, pp. 1764–1769 (2005)
Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)
Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. International Journal of General Systems 42(6), 706–720 (2013)
Dourlens, S., Ramdane-Cherif, A.: Modeling & understanding environment using semantic agents. Journal of Artificial Intelligence and Soft Computing Research 1(4), 301–314 (2011)
Fang, J., Varbanescu, A.L., Sips, H.: Benchmarking Intel Xeon Phi to Guide Kernel Design. Delft University of Technology Parallel and Distributed Systems Report Series, No. PDS-2013-005, pp. 1–22 (2013)
Gabryel, M., Korytkowski, M., Scherer, R., Rutkowski, L.: Object detection by simple fuzzy classifiers generated by boosting. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 540–547. Springer, Heidelberg (2013)
Galkowski, T., Rutkowski, L.: Nonparametric fitting of multivariate functions. IEEE Transactions on Automatic Control 31(8), 785–787 (1986)
Gałkowski, T.: Kernel estimation of regression functions in the boundary regions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 158–166. Springer, Heidelberg (2013)
Galkowski, T., Pawlak, M.: Nonparametric function fitting in the presence of nonstationary noise. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 531–538. Springer, Heidelberg (2014)
Gaweda, A.E., Scherer, R.: Fuzzy number-based hierarchical fuzzy system. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 302–307. Springer, Heidelberg (2004)
Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural Computation 14(8), 1771–1800 (2002)
Hinton, G.: A practical guide to training restricted Boltzmann machines. Momentum 9(1), 926 (2010)
Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527–1554 (2006)
http://miclab.pl : MICLAB Pilot laboratory of massively parallel systems. Web Page (2015)
http://yann.lecun.com/exdb/mnist/: The mnist database of handwritten digits
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1725–1732 (June 2014)
Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)
Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. arXiv preprint arXiv:1404.5997 (2014)
Laskowski, L., Laskowska, M.: Functionalization of SBA-15 mesoporous silica by cu-phosphonate units: Probing of synthesis route. Journal of Solid State Chemistry 220, 221–226 (2014)
Laskowski, L., Laskowska, M., Balanda, M., Fitta, M., Kwiatkowska, J., Dzilinski, K., Karczmarska, A.: Mesoporous silica SBA-15 functionalized by nickel-phosphonic units: Raman and magnetic analysis. Microporous and Mesoporous Materials 200, 253–259 (2014)
Laskowski, Ł., Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Spin-glass implementation of a Hopfield neural structure. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 89–96. Springer, Heidelberg (2014)
Le Roux, N., Bengio, Y.: Representational power of restricted boltzmann machines and deep belief networks. Neural Computation 20(6), 1631–1649 (2008)
Pabiasz, S., Starczewski, J.: Face reconstruction for 3D systems. In: Rutkowska, D., Cader, A., Przybyszewski, K. (eds.) Selected Topics in Computer Science Applications, pp. 54–63. Academic Publishing House EXIT (2011)
Pabiasz, S., Starczewski, J.T.: Meshes vs. depth maps in face recognition systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 567–573. Springer, Heidelberg (2012)
Pabiasz, S., Starczewski, J.T., Marvuglia, A.: A new three-dimensional facial landmarks in recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS (LNAI), vol. 8468, pp. 179–186. Springer, Heidelberg (2014)
Pabiasz, S., Starczewski, J.T.: A new approach to determine three-dimensional facial landmarks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 286–296. Springer, Heidelberg (2013)
Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural networks. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114 (2011)
Reinders, J.: An Overview of Programming for Intel Xeon Processors and Intel Xeon Phi Coprocessors. Technical report, The Intel Corporation (2012)
Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65(65), 386–408 (1958)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575 (2014)
Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)
Saule, E., Kaya, K., Çatalyürek, Ü.V.: Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 559–570. Springer, Heidelberg (2014)
Scherer, R., Rutkowski, L.: A fuzzy relational system with linguistic antecedent certainty factors. In: Rutkowski, L., Kacprzyk, J. (eds.) Proceedings of the Sixth International Conference on Neural Network and Soft Computing. Advances in Soft Computing, pp. 563–569. Springer, Heidelberg (2003)
Scherer, R.: Neuro-fuzzy relational systems for nonlinear approximation and prediction. Nonlinear Analysis 71, e1420–e1425 (2009)
Smolensky, P.: Information processing in dynamical systems: Foundations of harmony theory. In: Rumelhart, D.E., McLelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations, vol. 1, pp. 194–281. MIT (1986)
Staff, C.I., Reinders, J.: Parallel Programming and Optimization with Intel® Xeon PhiTM Coprocessors: Handbook on the Development and Optimization of Parallel Applications for Intel® Xeon Coprocessors and Intel® Xeon PhiTM Coprocessors. Colfax International (2013)
Szustak, L., Rojek, K., Gepner, P.: Using Intel Xeon Phi coprocessor to accelerate computations in MPDATA algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 582–592. Springer, Heidelberg (2014)
Szustak, L., Rojek, K., Olas, T., Kuczynski, L., Halbiniak, K., Gepner, P.: Adaptation of MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor. Scientific Programming (in press, 2015)
Tambouratzis, T., Chernikova, D., Pázsit, I.: Pulse shape discrimination of neutrons and gamma rays using Kohonen artificial neural networks. Journal of Artificial Intelligence and Soft Computing Research 3(2), 77–88 (2013)
Wyrzykowski, R., Szustak, L., Rojek, K.: Parallelization of 2d MPDATA EULAG algorithm on hybrid architectures with GPU accelerators. Parallel Computing 40(8), 425–447 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Olas, T., Mleczko, W.K., Nowicki, R.K., Wyrzykowski, R., Krzyzak, A. (2015). Adaptation of RBM Learning for Intel MIC Architecture. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-19324-3_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19323-6
Online ISBN: 978-3-319-19324-3
eBook Packages: Computer ScienceComputer Science (R0)