Abstract
Paper considers three Hopfield based architectures in the stereo matching problem solving. Together with classical analogue Hopfield structure two novel architectures are examined: Hybrid-Maximum Neural Network and Self Correcting Neural Network.Energy functions that are crucial for the network performance and working algorithm are also presented.All considered structures are tested to compare their performance features. Two of them are particularly important: accuracy and computational time. For the experiment real and simulated stereo images are used. Obtained results lead to the conclusion about feasibility of considered architectures in the stereo matching problem solving for real time applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abe, S.: Global convergence and suppression of spurious states of the hopfield neural networks. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 40(4), 246–257 (1993)
Al-askar, H., Lamb, D., Hussain, A.J., Al-Jumeily, D., Randles, M., Fergus, P.: Predicting financial time series data using artificial immune system-inspired neural networks. Journal of Artifcial Intelligence and Soft Computing Research 5(1), 45–68 (2015)
Alvarez, L., Weickert, J., Sanchez, J., Deriche, R.: Dense disparity map estimation respecting image discontinuities: a PDE and scale-space based approach. Technical Report RR-INRIA/RR-3874-FR+ENG-3874, INRIA, Rocquencourt (2000)
Anand, K., Raman, S., Subramanian, K.: Implementing a neuro fuzzy expert system for optimising the performance of chemical recovery boiler. Journal of Artifcial Intelligence and Soft Computing Research 4(2/3), 249–263 (2014)
Bali, S., Jha, D., Kumar, D., Pham, H.: Fuzzy multi-objective build-or-buy approach for component selection of fault tolerant software system under consensus recovery block scheme with mandatory redundancy in critical modules. Journal of Artifcial Intelligence and Soft Computing Research 4(2/3), 98–119 (2014)
Cierniak, R.: New neural network algorithm for image reconstruction from fan-beam projections. Neurocomputing 72(13-15), 3238–3244 (2009), Hybrid Learning Machines (HAIS 2007)/Recent Developments in Natural Computation (ICNC 2007)
Cpalka, K.: A new method for design and reduction of neuro fuzzy classification systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)
Cpalka, K., Rutkowski, L.: Flexible takagi sugeno neuro fuzzy structures for nonlinear approximation. WSEAS Transactions on Systems 5, 1450–1458 (2005)
Das, P., Pettersson, F., Dutta, S.: Pruned-bimodular neural networks for modelling of strength-ductility balance of hsla steel plates. Journal of Artifcial Intelligence and Soft Computing Research 4(4), 354–372 (2014)
Dunk, A., Haffegee, A., Alexandrov, V.N.: Selection methods for interactive creation and management of objects in 3d immersive environments. In: Sloot, P., van Albada, D., Dongarra, J. (eds.) ICCS. Procedia Computer Science, vol. 1, pp. 2609–2617. Elsevier (2010)
El-Laithy, K., Bogdan, M.: Synchrony state generation: an approach using stochastic synapses. Journal of Artificial Intelligence and Soft Computing Research 1, 17–25 (2011)
Fleet, D., Jepson, A.: Computation of component image velocity from local phase information. International Journal of Computer Vision 5(1), 77–104 (1990)
Gabryel, M., Korytkowski, M., Scherer, R., Rutkowski, L.: Object detection by simple fuzzy classifiers generated by boosting. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 540–547. Springer, Heidelberg (2013)
Grimson, E.: Computational experiments with a feature based stereo algorithm (1984)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004) ISBN: 0521540518
Hopfield, J., Feinstein, D., Palmer, R.: Unlearning has a stabilizing effect in collective memories. Nature 304, 158–159 (1983)
Hopfield, J., Tank, D.: Neural computation of decisions in optimization problems. Biological Cybernetics 52(3), 141–152 (1985)
Hopfield, J., Tank, D.: Computing with neural circuits: A model. Science 233, 624–633 (1986)
Katiyar, R., Pathak, V.K., Arya, K.: Human gait recognition system based on shadow free silhouettes using truncated singular value decomposition transformation model. Journal of Artifcial Intelligence and Soft Computing Research 4(4), 283–301 (2014)
Korytkowski, M., Nowicki, R., Rutkowski, L., Scherer, R.: AdaBoost ensemble of DCOG rough–neuro–fuzzy systems. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 62–71. Springer, Heidelberg (2011)
Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)
Laskowski, Ł.: Hybrid-maximum neural network for depth analysis from stereo-image. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 47–55. Springer, Heidelberg (2010)
Laskowski, Ł.: Objects auto-selection from stereo-images realised by self-correcting neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 119–125. Springer, Heidelberg (2012)
Laskowski, L.: A novel hybrid-maximum neural network in stereo-matching process. Neural Computing and Applications 23(7-8), 2435–2450 (2013)
Laskowski, L., Jelonkiewicz, J.: Self-correcting neural network for stereo-matching problem solving. Fundamenta Informaticae 138, 1–26 (2015)
Lee, J.J., Shim, J.C., Ha, Y.H.: Stereo correspondence using the hopfield neural network of a new energy function. Pattern Recognition 27(11), 1513–1522 (1994)
Lee, S., Park, J.: Dual-mode dynamics neural network for combinatorial optimization. Neurocomputing 8(3), 283–304 (1995), Optimization and Combinatorics, Part I-III
Nishihara, H.K.: Readings in computer vision: Issues, problems, principles, and paradigms, pp. 63–72. Morgan Kaufmann Publishers Inc., San Francisco (1987)
Nowicki, R., Pokropińska, A.: Information criterions applied to neuro-fuzzy architectures design. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 332–337. Springer, Heidelberg (2004)
Nowicki, R., Rutkowska, D.: Neuro–fuzzy systems based on Gödel and Sharp implication. In: Proceedings of Intern. Conference Application of Fuzzy Systems and Soft Computing — ICAFS 2000, Siegen, Germany, pp. 232–237 (June 2000)
Nowicki, R., Scherer, R., Rutkowski, L.: A method for learning of hierarchical fuzzy systems. In: Sincak, P., et al. (eds.) Intelligent Technologies – Theory and Applications, pp. 124–129. IOS Press, Amsterdam (2002)
Pajares, G., Cruz, J., Aranda, J.: Relaxation by hopfield network in stereo image matching. Pattern Recognition 31(5), 561–574 (1998)
Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding 97(3), 259–282 (2005)
Redi, J., Gastaldo, P., Zunino, R.: A two-layer neural system for reduced-reference visual quality assessment. Journal of Artificial Intelligence and Soft Computing Research 1, 27–41 (2011)
Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)
Rygał, J., Najgebauer, P., Nowak, T., Romanowski, J., Gabryel, M., Scherer, R.: Properties and structure of fast text search engine in context of semantic image analysis. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 592–599. Springer, Heidelberg (2012)
Scherer, R.: Neuro-fuzzy relational systems for nonlinear approximation and prediction. Nonlinear Analysis 71, e1420–e1425 (2009)
Scherer, R., Rutkowski, L.: A fuzzy relational system with linguistic antecedent certainty factors. In: Rutkowski, Kacprzyk (eds.) Proceedings of the Sixth International Conference on Neural Network and Soft Computing, Zakopane, Poland, June 11-15, 2002. Advances in Soft Computing, pp. 563–569. Springer, Physica-Verlag (2003)
Scherer, R., Rutkowski, L.: Neuro-fuzzy relational classifiers. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 376–380. Springer, Heidelberg (2004)
Singh, M., Hassan, M.: Hierarchical optimisation for non-linear dynamical systems with non-separable cost functions. Automatica 14(1), 99–101 (1978)
Starczewski, J., Scherer, R., Korytkowski, M., Nowicki, R.: Modular type-2 neuro-fuzzy systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 570–578. Springer, Heidelberg (2008)
Sun, C.: Fast algorithms for stereo matching and motion estimation. In: Australia-Japan Advanced Workshop on Computer Vision, September 9-11 (2003)
Sun, C., Jones, R., Talbot, H., Wu, X., Cheong, K., Beare, R., Buckley, M., Berman, M.: Measuring the distance of vegetation from powerlines using stereo vision. ISPRS Journal of Photogrammetry and Remote Sensing 60(4), 269–283 (2006)
Takefuji, Y., Lee, K.C., Aiso, H.: An artificial maximum neural network: a winner-take-all neuron model forcing the state of the system in a solution domain. Biological Cybernetics 67(3), 243–251 (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Laskowski, Ł., Jelonkiewicz, J., Hayashi, Y. (2015). Extensions of Hopfield Neural Networks for Solving of Stereo-Matching Problem. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-19324-3_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19323-6
Online ISBN: 978-3-319-19324-3
eBook Packages: Computer ScienceComputer Science (R0)