Nothing Special   »   [go: up one dir, main page]

Skip to main content

Integer Complexity: Experimental and Analytical Results II

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9118))

Included in the following conference series:

  • 387 Accesses

Abstract

We consider representing natural numbers by expressions using only 1’s, addition, multiplication and parentheses. Let \( \left\| n \right\| \) denote the minimum number of 1’s in the expressions representing \(n\). The logarithmic complexity \( \left\| n \right\| _{\log } \) is defined to be \({ \left\| n \right\| }/{\log _3 n}\). The values of \( \left\| n \right\| _{\log } \) are located in the segment \([3, 4.755]\), but almost nothing is known with certainty about the structure of this “spectrum” (are the values dense somewhere in the segment?, etc.). We establish a connection between this problem and another difficult problem: the seemingly “almost random” behaviour of digits in the base-3 representation of the numbers \(2^n\).

We also consider representing natural numbers by expressions that include subtraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  2. Altman, H.: Integer complexity and well-ordering. ArXiv e-prints, October 2013. http://arxiv.org/abs/1310.2894

  3. Altman, H.: Integer complexity, addition chains, and well-ordering. Ph.D. thesis, University of Michigan (2014). http://www-personal.umich.edu/~haltman/thesis-FIXED.pdf

  4. Altman, H., Zelinsky, J.: Numbers with integer complexity close to the lower bound. INTEGERS 12(6), 1093–1125 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aragón Artacho, F.J., Bailey, D.H., Borwein, J.M., Borwein, P.B.: Walking on real numbers. Math. Intell. 35(1), 42–60 (2013). doi:10.1007/s00283-012-9340-x

    Article  MATH  Google Scholar 

  6. Arias de Reyna, J., van de Lune, J.: Algorithms for determining integer complexity. ArXiv e-prints, April 2014. http://arxiv.org/abs/1404.2183

  7. Arias de Reyna, J., van de Lune, J.: How many \(1\)’s are needed? revisited. ArXiv e-prints, April 2014. http://arxiv.org/abs/1404.1850

  8. Belshaw, A., Borwein, P.: Champernowne’s number, strong normality, and the X chromosome. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J.D., Wolkowicz, H. (eds.) Computational and Analytical Mathematics, Springer Proceedings in Mathematics & Statistics, vol. 50, pp. 29–44. Springer, New York (2013). doi:10.1007/978-1-4614-7621-4_3

    Google Scholar 

  9. Gnang, E.K., Radziwill, M., Sanna, C.: Counting arithmetic formulas. ArXiv e-prints (2014). http://arxiv.org/abs/1406.1704

  10. Guy, R.K.: Some suspiciously simple sequences. Am. Math. Mon. 93(3), 186–190 (1986)

    Article  MathSciNet  Google Scholar 

  11. Iraids, J.: The On-Line Encyclopedia of Integer Sequences, Smallest number requiring \(n\) 1’s to build using \(+\), \(\cdot \) and \(-\). http://oeis.org/A255641

  12. Iraids, J.: Online calculator of integer complexity. http://expmath.lumii.lv/wiki/index.php/Special:Complexity. Accessed on 28 February 2015

  13. Iraids, J., Balodis, K., Čerņenoks, J., Opmanis, M., Opmanis, R., Podnieks, K.: Integer complexity: Experimental and analytical results. Scientific Papers University of Latvia, Computer Science and Information Technologies 787, 153–179 (2012), arXiv preprint: http://arxiv.org/abs/1203.6462

  14. Rawsthorne, D.A.: How many 1’s are needed? Fibonacci Q. 27(1), 14–17 (1989). http://www.fq.math.ca/Scanned/27-1/rawsthorne.pdf

    MATH  MathSciNet  Google Scholar 

  15. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, Complexity of \(n\): number of 1’s required to build \(n\) using \(+\) and \(\cdot \). http://oeis.org/A005245

  16. Steinerberger, S.: A short note on integer complexity. Contributions to Discrete Mathematics 9(1) (2014). http://cdm.ucalgary.ca/cdm/index.php/cdm/article/view/361

  17. Stewart, C.: On the representation of an integer in two different bases. Journal für die reine und angewandte Mathematik 319, 63–72 (1980). http://eudml.org/doc/152278

    MATH  Google Scholar 

  18. Vatter, V.: Maximal independent sets and separating covers. Am. Math. Mon. 118(5), 418–423 (2011). http://www.jstor.org/stable/pdfplus/10.4169/amer.math.monthly.118.05.418.pdf

    Article  MATH  MathSciNet  Google Scholar 

  19. Voß, J.: The On-Line Encyclopedia of Integer Sequences, Number of 1’s required to build \(n\) using \(+\), \(-\), \(\cdot \) and parentheses. http://oeis.org/A091333

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kārlis Podnieks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Čerņenoks, J., Iraids, J., Opmanis, M., Opmanis, R., Podnieks, K. (2015). Integer Complexity: Experimental and Analytical Results II. In: Shallit, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2015. Lecture Notes in Computer Science(), vol 9118. Springer, Cham. https://doi.org/10.1007/978-3-319-19225-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19225-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19224-6

  • Online ISBN: 978-3-319-19225-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics