Abstract
A method to generate various size tunable benchmarks for multi-objective AI planning with a known Pareto Front has been recently proposed in order to provide a wide range of Pareto Front shapes and different magnitudes of difficulty. The performance of the Pareto-based multi-objective evolutionary planner DaE \(_{\text {YAHSP}}\) are evaluated on some large instances with singular Pareto Front shapes, and compared to those of the single-objective aggregation-based approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bibaï, J., Savéant, P., Schoenauer, M., Vidal, V.: An evolutionary metaheuristic based on state decomposition for domain-independent satisficing planning. In: Brafman, R., et al. (eds.) 20th ICAPS, pp. 18–25. AAAI Press (2010)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. JAIR 36, 267–306 (2009)
Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P.: Multi-objective AI planning: comparing aggregation and pareto approaches. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 202–213. Springer, Heidelberg (2013)
Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P.: Pareto-based multiobjective AI planning. In: Rossi, F. (eds.) Proceedings of the IJCAI. AAAI Press (2013)
Quemy, A., Schoenauer, M.: True Pareto Fronts for Multi-Objective AI Planning Instances (2015, submitted)
Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: a new memetic scheme for domain-independent temporal planning. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)
Sroka, M., Long, D.: Exploring metric sensitivity of planners for generation of pareto frontiers. In: Kersting, K., Toussaint, M. (eds.) 6th STAIRS, pp. 306–317. IOS Press (2012)
Zhang, Q., Hui, L.: A Multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Quemy, A., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P. (2015). Solving Large MultiZenoTravel Benchmarks with Divide-and-Evolve. In: Dhaenens, C., Jourdan, L., Marmion, ME. (eds) Learning and Intelligent Optimization. LION 2015. Lecture Notes in Computer Science(), vol 8994. Springer, Cham. https://doi.org/10.1007/978-3-319-19084-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-19084-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19083-9
Online ISBN: 978-3-319-19084-6
eBook Packages: Computer ScienceComputer Science (R0)