Nothing Special   »   [go: up one dir, main page]

Skip to main content

Protein Crystallization Screening Using Associative Experimental Design

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9096))

Included in the following conference series:

Abstract

Protein crystallization remains a highly empirical process. The purpose of protein crystallization screening is the determination of the main factors of importance leading to protein crystallization. One of the major problems about determining these factors is that screening is often expanded to many hundreds or thousands of conditions to maximize combinatorial chemical space coverage for a successful (crystalline) outcome. In this paper, we propose a new experimental design method called “Associative Experimental Design (AED)” that provides a list of screening factors that are likely to lead to higher scoring outcomes or crystals by analyzing preliminary experimental results. We have tested AED on Nucleoside diphosphate kinase, HAD superfamily hydrolase, and nucleoside kinase proteins derived from the hyperthermophile Thermococcus thioreducens [1]. After obtaining the candidate novel conditions, we have confirmed that AED method yielded high scoring crystals after experimenting in a wet lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pikuta, E.V., Marsic, D., Itoh, T., Bej, A.K., Tang, J., Whitman, W.B., Ng, J.D., Garriott, O.K., Hoover, R.B.: Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 57(7), 1612–1618 (2007)

    Article  Google Scholar 

  2. McPherson, A., Gavira, J.A.: Introduction to protein crystallization. Acta Crystallographica Section F: Structural Biology Communications 70(1), 2–20 (2014)

    Article  Google Scholar 

  3. Jancarik, J., Kim, S.-H.: Sparse matrix sampling: a screening method for crystallization of proteins. Journal of Applied Crystallography 24(4), 409–411 (1991)

    Article  Google Scholar 

  4. McPherson, A.: Crystallization of Biological Macromolecules. Cold Spring Harbor Laboratory Press (1999), http://books.google.com/books?id=EDNRAAAAMAAJ

  5. Asherie, N.: Protein crystallization and phase diagrams. Methods 34(3), 266–272 (2004)

    Article  Google Scholar 

  6. Stevens, R.C.: High-throughput protein crystallization. Current Opinion in Structural Biology 10(5), 558–563 (2000)

    Article  Google Scholar 

  7. Brodersen, D.E., Andersen, G.R., Andersen, C.B.F.: Mimer: an automated spreadsheet-based crystallization screening system. Acta Crystallographica Section F 69(7), 815–820 (2013), http://dx.doi.org/10.1107/S1744309113014425 , doi:10.1107/S1744309113014425

    Google Scholar 

  8. Carter Jr., C.W., Carter, C.W.: Protein crystallization using incomplete factorial experiments. J. Biol. Chem. 254(23), 12219–12223 (1979)

    Google Scholar 

  9. Abergel, C., Moulard, M., Moreau, H., Loret, E., Cambillau, C., Fontecilla-Camps, J.C.: Systematic use of the incomplete factorial approach in the design of protein crystallization experiments. Journal of Biological Chemistry 266(30), 20131–20138 (1991)

    Google Scholar 

  10. Doudna, J.A., Grosshans, C., Gooding, A., Kundrot, C.E.: Crystallization of ribozymes and small rna motifs by a sparse matrix approach. Proceedings of the National Academy of Sciences 90(16), 7829–7833 (1993)

    Article  Google Scholar 

  11. Cox, M.J., Weber, P.C.: An investigation of protein crystallization parameters using successive automated grid searches (sags). Journal of Crystal Growth 90(1), 318–324 (1988)

    Article  Google Scholar 

  12. Luft, J.R., Newman, J., Snell, E.H.: Crystallization screening: the influence of history on current practice. Structural Biology and Crystallization Communications 70(7), 835–853 (2014)

    Article  Google Scholar 

  13. Snell, E.H., Nagel, R.M., Wojtaszcyk, A., O’Neill, H., Wolfley, J.L., Luft, J.R.: The application and use of chemical space mapping to interpret crystallization screening results. Acta Crystallographica Section D: Biological Crystallography 64(12), 1240–1249 (2008)

    Article  Google Scholar 

  14. McPherson, A., Cudney, B.: Optimization of crystallization conditions for biological macromolecules. Acta Crystallographica Section F 70(11), 1445–1467 (2014), http://dx.doi.org/10.1107/S2053230X14019670 , doi:10.1107/S2053230X14019670

    Google Scholar 

  15. Yang, H., Rasmuson, Å.C.: Phase equilibrium and mechanisms of crystallization in liquid–liquid phase separating system. Fluid Phase Equilibria 385, 120–128 (2015)

    Article  Google Scholar 

  16. Baumgartner, K., Galm, L., Nötzold, J., Sigloch, H., Morgenstern, J., Schleining, K., Suhm, S., Oelmeier, S.A., Hubbuch, J.: Determination of protein phase diagrams by microbatch experiments: Exploring the influence of precipitants and ph. International Journal of Pharmaceutics 479(1), 28–40 (2015)

    Article  Google Scholar 

  17. Forsythe, E., Achari, A., Pusey, M.L.: Trace fluorescent labeling for high-throughput crystallography. Acta Crystallographica Section D: Biological Crystallography 62(3), 339–346 (2006)

    Article  Google Scholar 

  18. Newman, J., Fazio, V.J., Lawson, B., Peat, T.S.: The c6 web tool: a resource for the rational selection of crystallization conditions. Crystal Growth & Design 10(6), 2785–2792 (2010)

    Article  Google Scholar 

  19. Pusey, M.L., Paley, M.S., Turner, M.B., Rogers, R.D.: Protein crystallization using room temperature ionic liquids. Crystal Growth & Design 7(4), 787–793 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dinç, İ., Pusey, M.L., Aygün, R.S. (2015). Protein Crystallization Screening Using Associative Experimental Design. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19048-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19047-1

  • Online ISBN: 978-3-319-19048-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics