Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Prudent Based Approach for Customer Churn Prediction

  • Conference paper
Beyond Databases, Architectures and Structures (BDAS 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 521))

Abstract

This study contributes to formalize a three phase customer churn prediction technique. In the first phase, a supervised feature selection procedure is adopted to select the most relevant subset of features by laying-off the redundancy and increasing the relevance that leads to reduced and highly correlated features set. In the second phase, a knowledge based system (KBS) is built through Ripple Down Rule (RDR) learner which acquires knowledge about seen customer churn behavior and handles the problem of brittle in churn KBS through prudence analysis that will issue a prompt to the decision maker whenever a case is beyond the maintained knowledge in the knowledge database. In the final phase, a technique for Simulated Expert (SE) is proposed to evaluate the Knowledge Acquisition (KA) in KB system. Moreover, by applying the proposed approach on publicly available dataset, the results show that the proposed approach can be a worthy alternate for churn prediction in telecommunication industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Data Set (2015), http://www.sgi.com/tech/mlc/db/ (accessed December 20, 2014)

  2. Ahn, J.H., Han, S.P., Lee, Y.S.: Customer churn analysis: Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry. Telecommunications Policy 30(10-11), 552–568 (2006), http://www.sciencedirect.com/science/article/pii/S0308596106000760

    Article  Google Scholar 

  3. Amin, A., Shehzad, S., Khan, C., Ali, I., Anwar, S.: Churn prediction in telecommunication industry using rough set approach. In: Camacho, D., Kim, S.W., Trawiski, B. (eds.) New Trends in Computational Collective Intelligence. SCI, vol. 572, pp. 83–95. Springer, Heidelberg (2015), http://dx.doi.org/10.1007/978-3-319-10774-5_8

    Chapter  Google Scholar 

  4. Burez, J., Van den Poel, D.: CRM at a pay-TV company: Using analytical models to reduce customer attrition by targeted marketing for subscription services. Expert Systems with Applications 32(2), 277–288 (2007), http://www.sciencedirect.com/science/article/pii/S0957417405003374

    Article  Google Scholar 

  5. Burez, J., Van den Poel, D.: Handling class imbalance in customer churn prediction. Expert Systems with Applications 36(3), 4626–4636 (2009), http://linkinghub.elsevier.com/retrieve/pii/S0957417408002121

    Article  Google Scholar 

  6. Compton, P., Jansen, R.: Knowledge in context: a strategy for expert system maintenance, pp. 292–306 (March 1990), http://dl.acm.org/citation.cfm?id=89411.89756

  7. Compton, P., Preston, P., Edwards, G., Kang, B.: Knowledge based systems that have some idea of their limits. In: Tenth Knowledge Acquisition for Knowledge-Based Systems Workshop (1996)

    Google Scholar 

  8. Farquad, M.A.H., Ravi, V., Raju, S.B.: Churn prediction using comprehensible support vector machine: An analytical CRM application. Applied Soft Computing 19, 31–40 (2014), http://www.sciencedirect.com/science/article/pii/S1568494614000507

    Article  Google Scholar 

  9. Gaines, B.R., Compton, P.: Induction of ripple-down rules applied to modeling large databases. Journal of Intelligent Information Systems 5(3), 211–228 (1995), http://dl.acm.org/citation.cfm?id=218246.218250

    Article  Google Scholar 

  10. Hadden, J., Tiwari, A., Roy, R., Ruta, D.: Computer assisted customer churn management: State-of-the-art and future trends. Computers & Operations Research 34(10), 2902–2917 (2007), http://www.sciencedirect.com/science/article/pii/S0305054805003503

    Article  MATH  Google Scholar 

  11. Holmes, G., Donkin, A., Witten, I.H.: WEKA: a machine learning workbench. In: Proceedings of ANZIIS 1994 - Australian New Zealnd Intelligent Information Systems Conference, pp. 357–361. IEEE (1994), http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=396988

  12. Huang, B., Kechadi, M.T., Buckley, B.: Customer churn prediction in telecommunications. Expert Systems with Applications 39(1), 1414–1425 (2012), http://dl.acm.org/citation.cfm?id=2038068.2038213

    Article  Google Scholar 

  13. Kang, C., Pei-ji, S.: Customer Churn Prediction Based on SVM-RFE. In: 2008 International Seminar on Business and Information Management, vol. 1, pp. 306–309. IEEE (December 2008), http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5117490

  14. Khan, I., Usman, I., Usman, T., Rehman, G.U., Rehman, A.U.: Intelligent Churn prediction for Telecommunication Industry. International Journal of Innovation and Applied Studies 4(1), 165–170 (2013)

    Google Scholar 

  15. Kirui, C., Hong, L., Cheruiyot, W., Kirui, H.: Predicting Customer Churn in Mobile Telephony Industry Using Probabilistic Classifiers in Data Mining. IJCSI International Journal of Computer Science Issues 10(2), 165–172 (2013)

    Google Scholar 

  16. Lazarov, V., Capota, M.: Churn Prediction. Business Analytics Course. TUM Computer Science (2007), http://home.in.tum.de/~lazarov/files/research/papers/churn-prediction.pdf

  17. Lin, C.S., Tzeng, G.H., Chin, Y.C.: Combined rough set theory and flow network graph to predict customer churn in credit card accounts. Expert Systems with Applications 38(1), 8–15 (2011), http://linkinghub.elsevier.com/retrieve/pii/S0957417410004501

    Article  Google Scholar 

  18. Maruatona, O., Vamplew, P., Dazeley, R.: Knowledge Management and Acquisition for Intelligent Systems. Springer, Heidelberg (2012)

    Google Scholar 

  19. Maruatona, O.O., Vamplew, P., Dazeley, R.: Prudent Fraud Detection in Internet Banking. In: 2012 Third Cybercrime and Trustworthy Computing Workshop, pp. 60–65. IEEE (October 2012), http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6498429

  20. Mozer, M.C., Wolniewicz, R., Grimes, D.B., Johnson, E., Kaushansky, H.: Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry. IEEE Transactions on Neural Networks / A Publication of the IEEE Neural Networks Council 11(3), 690–696 (2000), http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=846740

    Article  Google Scholar 

  21. Richards, D., Compton, P.: Taking up the situated cognition challenge with ripple down rules. International Journal of Human-Computer Studies 49(6), 895–926 (1998), http://www.sciencedirect.com/science/article/pii/S1071581998902312

    Article  Google Scholar 

  22. Saradhi, V.V., Palshikar, G.K.: Employee churn prediction. Expert Systems with Applications 38(3), 1999–2006 (2011), http://www.sciencedirect.com/science/article/pii/S0957417410007621

    Article  Google Scholar 

  23. Scheffer, T.: Algebraic Foundation and Improved Methods of Induction of Ripple Down Rules. In: Pasific Knowledge Acquisition Workshop, Sydney, pp. 23–25 (1996)

    Google Scholar 

  24. Sharma, A., Prabin Kumar, P.: A Neural Network based Approach for Predicting Customer Churn in Cellular Network Services. International Journal of Computer Applications 27(11), 26–31 (2011)

    Article  Google Scholar 

  25. Soeini, R.A., Rodpysh, K.V.: Applying Data Mining to Insurance Customer Churn Management 30, 82–92 (2012)

    Google Scholar 

  26. Suznjevic, M., Stupar, I., Matijasevic, M.: MMORPG Player Behavior Model based on Player Action Categories. IEEE (2011)

    Google Scholar 

  27. Van den Poel, D., Larivière, B.: Customer attrition analysis for financial services using proportional hazard models. European Journal of Operational Research 157(1), 196–217 (2004), http://www.sciencedirect.com/science/article/pii/S0377221703000699

    Article  MATH  Google Scholar 

  28. Verbeke, W., Martens, D., Baesens, B.: Social network analysis for customer churn prediction. Applied Soft Computing 14, 431–446 (2014), http://linkinghub.elsevier.com/retrieve/pii/S1568494613003116

    Article  Google Scholar 

  29. Verbeke, W., Martens, D., Mues, C., Baesens, B.: Building comprehensible customer churn prediction models with advanced rule induction techniques. Expert Systems with Applications 38(3), 2354–2364 (2011), http://www.sciencedirect.com/science/article/pii/S0957417410008067

    Article  Google Scholar 

  30. Wolniewicz, R.H., Dodier, R.: Predicting customer behavior in telecommunications. IEEE Intelligent Systems 19(2), 50–58 (2004), http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1274911

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Amin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Amin, A., Rahim, F., Ramzan, M., Anwar, S. (2015). A Prudent Based Approach for Customer Churn Prediction. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. BDAS 2015. Communications in Computer and Information Science, vol 521. Springer, Cham. https://doi.org/10.1007/978-3-319-18422-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18422-7_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18421-0

  • Online ISBN: 978-3-319-18422-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics