Abstract
The basic idea of a recent graph matching framework is to reduce the problem of graph edit distance (GED) to an instance of a linear sum assignment problem (LSAP). The optimal solution for this simplified GED problem can be computed in cubic time and is eventually used to derive a suboptimal solution for the original GED problem. Yet, for large scale graphs and/or large scale graph sets the cubic time complexity remains a severe handicap of this procedure. Therefore, we propose to use suboptimal algorithms – with quadratic rather than cubic time complexity – for solving the underlying LSAP. In particular, we introduce several greedy assignment algorithms for approximating GED. In an experimental evaluation we show that there is great potential for further speeding up the GED computation. Moreover, we empirically confirm that the distances obtained by this procedure remain sufficiently accurate for graph based pattern classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)
Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part B) 13(3), 353–363 (1983)
Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)
Robles-Kelly, A., Hancock, E.: Graph edit distance from spectral seriation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 365–378 (2005)
Emms, D., Wilson, R., Hancock, E.: Graph edit distance without correspondence from continuous-time quantum walks. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR&SPR 2008. LNCS, vol. 5342, pp. 5–14. Springer, Heidelberg (2008)
Boeres, M., Ribeiro, C., Bloch, I.: A randomized heuristic for scene recognition by graph matching. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 100–113. Springer, Heidelberg (2004)
Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer, Heidelberg (2005)
Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Trans. on Pattern Analysis ans Machine Intelligence 28(8), 1200–1214 (2006)
Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image and Vision Computing 27(4), 950–959 (2009)
Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial and Applied Mathematics, Philadelphia (2009)
Riesen, K., Ferrer, M., Dornberger, R., Bunke, H.: Greedy graph edit distance (Submitted to MLDM)
Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)
Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR&SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Riesen, K., Ferrer, M., Fischer, A., Bunke, H. (2015). Approximation of Graph Edit Distance in Quadratic Time. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-18224-7_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18223-0
Online ISBN: 978-3-319-18224-7
eBook Packages: Computer ScienceComputer Science (R0)