Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximation of Graph Edit Distance in Quadratic Time

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9069))

Abstract

The basic idea of a recent graph matching framework is to reduce the problem of graph edit distance (GED) to an instance of a linear sum assignment problem (LSAP). The optimal solution for this simplified GED problem can be computed in cubic time and is eventually used to derive a suboptimal solution for the original GED problem. Yet, for large scale graphs and/or large scale graph sets the cubic time complexity remains a severe handicap of this procedure. Therefore, we propose to use suboptimal algorithms – with quadratic rather than cubic time complexity – for solving the underlying LSAP. In particular, we introduce several greedy assignment algorithms for approximating GED. In an experimental evaluation we show that there is great potential for further speeding up the GED computation. Moreover, we empirically confirm that the distances obtained by this procedure remain sufficiently accurate for graph based pattern classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)

    Article  MATH  Google Scholar 

  2. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part B) 13(3), 353–363 (1983)

    Article  MATH  Google Scholar 

  3. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)

    Article  MathSciNet  Google Scholar 

  4. Robles-Kelly, A., Hancock, E.: Graph edit distance from spectral seriation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 365–378 (2005)

    Article  Google Scholar 

  5. Emms, D., Wilson, R., Hancock, E.: Graph edit distance without correspondence from continuous-time quantum walks. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR&SPR 2008. LNCS, vol. 5342, pp. 5–14. Springer, Heidelberg (2008)

    Google Scholar 

  6. Boeres, M., Ribeiro, C., Bloch, I.: A randomized heuristic for scene recognition by graph matching. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 100–113. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Trans. on Pattern Analysis ans Machine Intelligence 28(8), 1200–1214 (2006)

    Article  Google Scholar 

  9. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image and Vision Computing 27(4), 950–959 (2009)

    Article  Google Scholar 

  10. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Google Scholar 

  11. Riesen, K., Ferrer, M., Dornberger, R., Bunke, H.: Greedy graph edit distance (Submitted to MLDM)

    Google Scholar 

  12. Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  13. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR&SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaspar Riesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Riesen, K., Ferrer, M., Fischer, A., Bunke, H. (2015). Approximation of Graph Edit Distance in Quadratic Time. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics