Abstract
This paper proposes a hybrid approach in establishing vectorial versions of Ekeland’s variational principle. It bases on both the nonlinear scalarization functional in Tammer (Gerth) and Weidner’s nonconvex separation theorem [14] from a scalarization approach and Bao and Mordukhovich’s iterative scheme in [5] from a variational approach. Examples are provided to illustrate improvements of new results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Systems and Control: Foundations and Applications. Birkhäuser, Boston (1990)
Bao, T.Q., Eichfelder, G., Soleimani, B., Tammer, C.: Ekeland’s Variational Principle for Vector Optimization with Variable Ordering Structure. Preprint No. M 14/08. Technische Universität Ilmenau Institut für Mathematik (2014)
Bao, T.Q., Khanh, P.Q., Soubeyran, A.: Variational Principles with Generalized Distances and Applications to Behavioral Sciences (2015)
Bao, T.Q., Mordukhovich, B.S.: Variational Principles for Set-Valued Mappings with Applications to Multiobjective Optimization. Control Cybern. 36, 531–562 (2007)
Bao, T.Q., Mordukhovich, B.S.: Relative Pareto Minimizers for Multiobjective Problems: Existence and Optimality Conditions. Math. Progr. 122, 301–347 (2010)
Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Variational Analysis in Psychological Modeling. J. Optim. Theory Appl. 164, 290–315 (2015)
Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Fixed Points and Variational Principles with Applications to Capability Theory of Wellbeing via Variational Rationality. Set-Valued Var. Anal. (2015), doi:10.1007/s11228-014-0313-4
Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Minimal Points, Variational Principles, and Variable Preferences in Set Optimization. To appear in J. Nonlinear Convex Anal. (2015)
Bao, T.Q., Théra, M.: On Extended Versions of Dancs-Hegedüs-Medvegyev’s Fixed Point Theorem (2015)
Borwein, J.M., Zhu, Q.J.: Techniques of variational analysis. Springer, New York (2005)
Dancs, S., Hegedüs, M., Medvegyev, P.: A General Ordering and Fixed-Point Principle in Complete Metric Space. Acta Sci. Math. 46, 381–388 (1983)
Ekeland, I.: Nonconvex Minimization Problems. Bull. Amer. Math. Soc. 1, 443–474 (1979)
Ekeland, I., Turnbull, T.: Infinite-Dimensional Optimization and Convexity. University of Chicago Press, Chicago (1983)
Gerth (Tammer), C., Weidner, P.: Nonconvex Separation Theorems and Some Applications in Vector Optimization. J. Optim. Theory Appl. 67, 297–320 (1990)
Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)
Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, New York (2004)
Khanh, P.Q., Quy, D.N.: A Generalized Distance and Enhanced Ekeland’s Variational Principle for Vector Functions. Nonlinear Anal. 73, 2245–2259 (2010)
Luc, D.T.: Theory of Vector Optimization. Springer (1989)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, New York (2006)
Qiu, J.H.: A Preorder Principle and Set-Valued Ekeland Variational Principle. J. Math. Anal. Appl. 419, 904–937 (2014)
Qui, J.-H.: A Revised Preorder Principle and Set-Valued Ekeland Variational Principles. arXiv (2014)
Tammer, C.: A Generalization of Ekeland’s Variational Principle. Optimization 5, 129–141 (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Truong, Q.B. (2015). Vectorial Ekeland Variational Principles: A Hybrid Approach. In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-319-18161-5_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-18161-5_44
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18160-8
Online ISBN: 978-3-319-18161-5
eBook Packages: EngineeringEngineering (R0)