Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 359))

  • 1579 Accesses

Abstract

This paper proposes a hybrid approach in establishing vectorial versions of Ekeland’s variational principle. It bases on both the nonlinear scalarization functional in Tammer (Gerth) and Weidner’s nonconvex separation theorem [14] from a scalarization approach and Bao and Mordukhovich’s iterative scheme in [5] from a variational approach. Examples are provided to illustrate improvements of new results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Systems and Control: Foundations and Applications. Birkhäuser, Boston (1990)

    Google Scholar 

  2. Bao, T.Q., Eichfelder, G., Soleimani, B., Tammer, C.: Ekeland’s Variational Principle for Vector Optimization with Variable Ordering Structure. Preprint No. M 14/08. Technische Universität Ilmenau Institut für Mathematik (2014)

    Google Scholar 

  3. Bao, T.Q., Khanh, P.Q., Soubeyran, A.: Variational Principles with Generalized Distances and Applications to Behavioral Sciences (2015)

    Google Scholar 

  4. Bao, T.Q., Mordukhovich, B.S.: Variational Principles for Set-Valued Mappings with Applications to Multiobjective Optimization. Control Cybern. 36, 531–562 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Bao, T.Q., Mordukhovich, B.S.: Relative Pareto Minimizers for Multiobjective Problems: Existence and Optimality Conditions. Math. Progr. 122, 301–347 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Variational Analysis in Psychological Modeling. J. Optim. Theory Appl. 164, 290–315 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Fixed Points and Variational Principles with Applications to Capability Theory of Wellbeing via Variational Rationality. Set-Valued Var. Anal. (2015), doi:10.1007/s11228-014-0313-4

    Google Scholar 

  8. Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Minimal Points, Variational Principles, and Variable Preferences in Set Optimization. To appear in J. Nonlinear Convex Anal. (2015)

    Google Scholar 

  9. Bao, T.Q., Théra, M.: On Extended Versions of Dancs-Hegedüs-Medvegyev’s Fixed Point Theorem (2015)

    Google Scholar 

  10. Borwein, J.M., Zhu, Q.J.: Techniques of variational analysis. Springer, New York (2005)

    MATH  Google Scholar 

  11. Dancs, S., Hegedüs, M., Medvegyev, P.: A General Ordering and Fixed-Point Principle in Complete Metric Space. Acta Sci. Math. 46, 381–388 (1983)

    MATH  Google Scholar 

  12. Ekeland, I.: Nonconvex Minimization Problems. Bull. Amer. Math. Soc. 1, 443–474 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ekeland, I., Turnbull, T.: Infinite-Dimensional Optimization and Convexity. University of Chicago Press, Chicago (1983)

    MATH  Google Scholar 

  14. Gerth (Tammer), C., Weidner, P.: Nonconvex Separation Theorems and Some Applications in Vector Optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

    MATH  Google Scholar 

  16. Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, New York (2004)

    Book  Google Scholar 

  17. Khanh, P.Q., Quy, D.N.: A Generalized Distance and Enhanced Ekeland’s Variational Principle for Vector Functions. Nonlinear Anal. 73, 2245–2259 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Luc, D.T.: Theory of Vector Optimization. Springer (1989)

    Google Scholar 

  19. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, New York (2006)

    Google Scholar 

  20. Qiu, J.H.: A Preorder Principle and Set-Valued Ekeland Variational Principle. J. Math. Anal. Appl. 419, 904–937 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Qui, J.-H.: A Revised Preorder Principle and Set-Valued Ekeland Variational Principles. arXiv (2014)

    Google Scholar 

  22. Tammer, C.: A Generalization of Ekeland’s Variational Principle. Optimization 5, 129–141 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Bao Truong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Truong, Q.B. (2015). Vectorial Ekeland Variational Principles: A Hybrid Approach. In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-319-18161-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18161-5_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18160-8

  • Online ISBN: 978-3-319-18161-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics