Abstract
Inferring diffusion networks from traces of cascades has been intensively studied to gain a better understanding of information diffusion. Traditional methods normally formulate a generative model to find the network that can generate the cascades with the maximum likelihood. The performance of such methods largely depends on sufficient cascades spreading in the network. In many real-world scenarios, however, the cascades may be rare. The very sparse data make accurately inferring the diffusion network extremely challenging. To address this issue, in this paper we study the problem of transferring structure knowledge from an external diffusion network with sufficient cascade data to help infer the hidden diffusion network with sparse cascades. To this end, we first consider the network inference problem from a new angle: link prediction. This transformation enables us to apply transfer learning techniques to predict the hidden links with the help of a large volume of cascades and observed links in the external network. Meanwhile, to integrate the structure and cascade knowledge of the two networks, we propose a unified optimization framework TrNetInf. We conduct extensive experiments on two real-world datasets: MemeTracker and Aminer. The results demonstrate the effectiveness of the proposed TrNetInf in addressing the network inference problem with insufficient cascades.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gomez-Rodriguez, M., Leskovec, J., Scholkopf, B.: Modeling information propagation with survival theory. In: ICML (2013)
Wang, S.Z., Yan, Z., Hu, X., Yu, P.S., Li, Z.J.: Burst time prediction in cascades. In: AAAI (2015)
Wang, L., Ermon, S., Hopcroft, J.E.: Feature-enhanced probabilistic models for diffusion network inference. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 499–514. Springer, Heidelberg (2012)
Lu, L.Y., Zhou, T.: Link Prediction in Complex Networks: A Survey. Physica A: Statistical Mechanics and its Applications 390(6), 1150–1170 (2011)
Tang, J., Zhang, D., Yao, L.M.: Social network extraction of academic researchers. In: ICDM (2007)
Zhang, J.W., Yu, P.S., Zhou, Z.H.: Meta-path based multi-network collective link prediction. In: KDD (2014)
Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: KDD (2009)
Tang, J., Zhang, J., Yao, L.M., Li, J.Z., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: KDD (2008)
Dai, W.Y., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: ICML (2009)
Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM (2006)
Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspective and methods in link prediction. In: KDD (2010)
Jiang, W., Chung, F.: Transfer spectral clustering. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 789–803. Springer, Heidelberg (2012)
Pardoe, D., Stone, P.: Boosting for regression transfer. In: ICML (2010)
Zhu, Y., Chen, Y.Q., Lu, Z.Q., Pan, S.J., Xue, G.R., Yu, Y., Yang, Q.: Heterogeneous transfer learning for image classification. In: AAAI (2011)
Pan, S.J., Yang, Q.: A Survey on Transfer Learning. IEEE Trans. on Knowl. and Data Eng. 22(10), 1345–1359 (2010)
Herlihy, M.: Diffusion in Organizations and Social Movements: From Hybrid Corn to Poison Pills. Annual Review of Sociology 24, 265–290 (1998)
Wang, S.Z., Hu, X., Yu, P.S., Li, Z.J.: MMRate: inferring multi-aspect diffusion networks with multi-pattern cascades. In: KDD (2014)
Erdman, D.D.: Propagation and Identification of Viruses. Topley and Wilson’s Microblology and Microblal Infections (2010)
Du, N., Song L., Woo, H., Zha, H.Y.: Uncover topic-sensitive information diffusion networks. In: AISTATS (2013)
Myers, S.A., Leskovec, J.: On the convexity of latent social network inference. In: NIPS (2010)
Gomez-Rodriguez, M., Balduzzi, D., Scholkopf, B.: Uncovering the temporal dynamics of diffusion networks. In: ICML (2011)
Gomez-Rodriguez, M., Leskovec, J., Scholkopf, B.: Structure and dynamics of information pathways in online media. In: WSDM (2013)
Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: KDD (2010)
Leskovec, J., Singh, A., Kleinberg, J.M.: Patterns of influence in a recommendation network. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 380–389. Springer, Heidelberg (2006)
Chen, W., Wang, C., Wang, Y.J.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD (2010)
Kempe, D., Kleinberg, J., Tardos, E.:Maximizing the spread of influence through a social network. In: KDD (2003)
Newey, W.K., McFadden, D.: Large sample estimation and hypothesis testing. In: Handbook of Econometrics, pp. 2111–2245 (1994)
Wang, L., Ermon, S., Hopcroft, J.E.: Feature-enhanced probabilistic models for diffusion network inference. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 499–514. Springer, Heidelberg (2012)
Liben-Nowell, D., Kleinberg, J.: The Link Prediction Problem for Social Networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)
Chen, Z.Y., Liu, B.: Topic modeling using topics form many domains, lifelong learning and big data. In: ICML (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, S., Zhang, H., Zhang, J., Zhang, X., Yu, P.S., Li, Z. (2015). Inferring Diffusion Networks with Sparse Cascades by Structure Transfer. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M. (eds) Database Systems for Advanced Applications. DASFAA 2015. Lecture Notes in Computer Science(), vol 9049. Springer, Cham. https://doi.org/10.1007/978-3-319-18120-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-18120-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18119-6
Online ISBN: 978-3-319-18120-2
eBook Packages: Computer ScienceComputer Science (R0)