Nothing Special   »   [go: up one dir, main page]

Skip to main content

Inferring Diffusion Networks with Sparse Cascades by Structure Transfer

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9049))

Included in the following conference series:

Abstract

Inferring diffusion networks from traces of cascades has been intensively studied to gain a better understanding of information diffusion. Traditional methods normally formulate a generative model to find the network that can generate the cascades with the maximum likelihood. The performance of such methods largely depends on sufficient cascades spreading in the network. In many real-world scenarios, however, the cascades may be rare. The very sparse data make accurately inferring the diffusion network extremely challenging. To address this issue, in this paper we study the problem of transferring structure knowledge from an external diffusion network with sufficient cascade data to help infer the hidden diffusion network with sparse cascades. To this end, we first consider the network inference problem from a new angle: link prediction. This transformation enables us to apply transfer learning techniques to predict the hidden links with the help of a large volume of cascades and observed links in the external network. Meanwhile, to integrate the structure and cascade knowledge of the two networks, we propose a unified optimization framework TrNetInf. We conduct extensive experiments on two real-world datasets: MemeTracker and Aminer. The results demonstrate the effectiveness of the proposed TrNetInf in addressing the network inference problem with insufficient cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gomez-Rodriguez, M., Leskovec, J., Scholkopf, B.: Modeling information propagation with survival theory. In: ICML (2013)

    Google Scholar 

  2. Wang, S.Z., Yan, Z., Hu, X., Yu, P.S., Li, Z.J.: Burst time prediction in cascades. In: AAAI (2015)

    Google Scholar 

  3. Wang, L., Ermon, S., Hopcroft, J.E.: Feature-enhanced probabilistic models for diffusion network inference. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 499–514. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Lu, L.Y., Zhou, T.: Link Prediction in Complex Networks: A Survey. Physica A: Statistical Mechanics and its Applications 390(6), 1150–1170 (2011)

    Article  MathSciNet  Google Scholar 

  5. Tang, J., Zhang, D., Yao, L.M.: Social network extraction of academic researchers. In: ICDM (2007)

    Google Scholar 

  6. Zhang, J.W., Yu, P.S., Zhou, Z.H.: Meta-path based multi-network collective link prediction. In: KDD (2014)

    Google Scholar 

  7. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: KDD (2009)

    Google Scholar 

  8. Tang, J., Zhang, J., Yao, L.M., Li, J.Z., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: KDD (2008)

    Google Scholar 

  9. Dai, W.Y., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: ICML (2009)

    Google Scholar 

  10. Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM (2006)

    Google Scholar 

  11. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspective and methods in link prediction. In: KDD (2010)

    Google Scholar 

  12. Jiang, W., Chung, F.: Transfer spectral clustering. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 789–803. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Pardoe, D., Stone, P.: Boosting for regression transfer. In: ICML (2010)

    Google Scholar 

  14. Zhu, Y., Chen, Y.Q., Lu, Z.Q., Pan, S.J., Xue, G.R., Yu, Y., Yang, Q.: Heterogeneous transfer learning for image classification. In: AAAI (2011)

    Google Scholar 

  15. Pan, S.J., Yang, Q.: A Survey on Transfer Learning. IEEE Trans. on Knowl. and Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  16. Herlihy, M.: Diffusion in Organizations and Social Movements: From Hybrid Corn to Poison Pills. Annual Review of Sociology 24, 265–290 (1998)

    Article  Google Scholar 

  17. Wang, S.Z., Hu, X., Yu, P.S., Li, Z.J.: MMRate: inferring multi-aspect diffusion networks with multi-pattern cascades. In: KDD (2014)

    Google Scholar 

  18. Erdman, D.D.: Propagation and Identification of Viruses. Topley and Wilson’s Microblology and Microblal Infections (2010)

    Google Scholar 

  19. Du, N., Song L., Woo, H., Zha, H.Y.: Uncover topic-sensitive information diffusion networks. In: AISTATS (2013)

    Google Scholar 

  20. Myers, S.A., Leskovec, J.: On the convexity of latent social network inference. In: NIPS (2010)

    Google Scholar 

  21. Gomez-Rodriguez, M., Balduzzi, D., Scholkopf, B.: Uncovering the temporal dynamics of diffusion networks. In: ICML (2011)

    Google Scholar 

  22. Gomez-Rodriguez, M., Leskovec, J., Scholkopf, B.: Structure and dynamics of information pathways in online media. In: WSDM (2013)

    Google Scholar 

  23. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: KDD (2010)

    Google Scholar 

  24. Leskovec, J., Singh, A., Kleinberg, J.M.: Patterns of influence in a recommendation network. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 380–389. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Chen, W., Wang, C., Wang, Y.J.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD (2010)

    Google Scholar 

  26. Kempe, D., Kleinberg, J., Tardos, E.:Maximizing the spread of influence through a social network. In: KDD (2003)

    Google Scholar 

  27. Newey, W.K., McFadden, D.: Large sample estimation and hypothesis testing. In: Handbook of Econometrics, pp. 2111–2245 (1994)

    Google Scholar 

  28. Wang, L., Ermon, S., Hopcroft, J.E.: Feature-enhanced probabilistic models for diffusion network inference. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 499–514. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Liben-Nowell, D., Kleinberg, J.: The Link Prediction Problem for Social Networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  30. Chen, Z.Y., Liu, B.: Topic modeling using topics form many domains, lifelong learning and big data. In: ICML (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senzhang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, S., Zhang, H., Zhang, J., Zhang, X., Yu, P.S., Li, Z. (2015). Inferring Diffusion Networks with Sparse Cascades by Structure Transfer. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M. (eds) Database Systems for Advanced Applications. DASFAA 2015. Lecture Notes in Computer Science(), vol 9049. Springer, Cham. https://doi.org/10.1007/978-3-319-18120-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18120-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18119-6

  • Online ISBN: 978-3-319-18120-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics