Abstract
We propose an approach for Parse Quality Estimation based on the dynamic computation of an entropy-based confusion score for directed arcs and for joint prediction of directed arcs and their dependency labels, in a typed dependency parsing framework. This score accompanies a parsed output and aims to present an exhaustive picture of the parse quality, detailed down to each arc of the parse tree. The methodology explores the confusion encountered by the oracle of a transition-based data-driven dependency parser. We support our hypothesis by analytically illustrating, for 18 languages, that the arcs with high confusion scores are notably the predominant parsing errors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency parsing. In: Proceedings of the Tenth Conference on Computational Natural Language Learning, pp. 149–164. Association for Computational Linguistics (2006)
Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and maxent discriminative reranking. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 173–180. ACL (2005)
Collins, M., Koo, T.: Discriminative reranking for natural language parsing. In: Machine Learning-International Workshop then Conference, pp. 175–182. Citeseer (2000)
Goldberg, Y., Elhadad, M.: Precision-biased parsing and high-quality parse selection. arXiv preprint arXiv:1205.4387 (2012)
Hall, J., Nilsson, J., Nivre, J., Eryiǧit, G., Megyesi, B., Nilsson, M., Saers, M.: Single malt or blended? A study in multilingual parser optimization. In: Proceedings of the CoNLL Shared Task of EMNLP-CoNLL 2007, pp. 933–939 (2007)
Hall, K.: K-best spanning tree parsing. In: Annual Meeting-Association for Computational Linguistics, vol. 45, p. 392 (2007)
Hwa, R.: Sample selection for statistical parsing. Computational Linguistics 30(3), 253–276 (2004)
Jain, S., Agrawal, B.: A dynamic confusion score for dependency arc labels. In: Proceedings of the Sixth International Joint Conference on Natural Language Processing, pp. 1237–1242. Asian Federation of Natural Language Processing, Nagoya (2013), http://www.aclweb.org/anthology/I13-1176
Kawahara, D., Uchimoto, K.: Learning reliability of parses for domain adaptation of dependency parsing. IJCNLP 2008 (2008)
Kolachina, S., Kolachina, P.: Parsing any domain english text to conll dependencies. In: Calzolari N., Choukri, K., Declerck, T., Doħan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) Proceedings of the Eight International Conference on Language Resources and Evaluation, LREC 2012. European Language Resources Association (ELRA), Istanbul (May 2012)
Koo, T., Collins, M.: Hidden-variable models for discriminative reranking. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 507–514. ACL (2005)
Mannem, P., Dara, A.: Partial parsing from bitext projections. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 1597–1606. Association for Computational Linguistics (2011)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval, vol. 1. Cambridge University Press, Cambridge (2008)
McClosky, D., Charniak, E., Johnson, M.: Effective self-training for parsing. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, pp. 152–159. Association for Computational Linguistics (2006)
McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency parsing using spanning tree algorithms. In: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 523–530. Association for Computational Linguistics (2005)
McDonald, R.T., Nivre, J.: Characterizing the errors of data-driven dependency parsing models. In: EMNLP-CoNLL, pp. 122–131 (2007)
Mejer, A., Crammer, K.: Are you sure?: confidence in prediction of dependency tree edges. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 573–576. Association for Computational Linguistics (2012)
Nilsson, J., Riedel, S., Yuret, D.: The CoNLL 2007 shared task on dependency parsing. In: Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL, pp. 915–932. sn (2007)
Nivre, J.: An efficient algorithm for projective dependency parsing. In: Proceedings of the 8th International Workshop on Parsing Technologies, IWPT. Citeseer (2003)
Nivre, J., Hall, J., Nilsson, J.: Memory-based dependency parsing. In: Proceedings of CoNLL, pp. 49–56 (2004)
Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kubler, S., Marinov, S., Marsi, E.: MaltParser: A language-independent system for data-driven dependency parsing. Natural Language Engineering 13(2), 95 (2007)
Nivre, J., Hall, J., Nilsson, J., Eryiǧit, G., Marinov, S.: Labeled pseudo-projective dependency parsing with support vector machines. In: Proceedings of the Tenth Conference on Computational Natural Language Learning, pp. 221–225. Association for Computational Linguistics (2006)
Owczarzak, K.: Depeval (summ): dependency-based evaluation for automatic summaries. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, vol. 1, pp. 190–198. Association for Computational Linguistics (2009)
Petrov, S., Chang, P.C., Ringgaard, M., Alshawi, H.: Uptraining for accurate deterministic question parsing. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 705–713. Association for Computational Linguistics (2010)
Ravi, S., Knight, K., Soricut, R.: Automatic prediction of parser accuracy. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 887–896. Association for Computational Linguistics (2008)
Settles, B.: Active learning literature survey. University of Wisconsin, Madison (2010)
Sharma, D.M., Mannem, P., van Genabith, J., Devi, S.L., Mamidi, R., Parthasarathi, R. (eds.) Proceedings of the Workshop on Machine Translation and Parsing in Indian Languages. The COLING 2012 Organizing Committee, Mumbai, India (December 2012), http://www.aclweb.org/anthology/W12-56
Singla, K., Tammewar, A., Jain, N., Jain, S.: Two-stage Approach for Hindi Dependency Parsing Using MaltParser. Training 12041(268,093), 22–27 (2012)
Steedman, M., Hwa, R., Clark, S., Osborne, M., Sarkar, A., Hockenmaier, J., Ruhlen, P., Baker, S., Crim, J.: Example selection for bootstrapping statistical parsers. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, vol. 1, pp. 157–164. Association for Computational Linguistics (2003)
Tang, M., Luo, X., Roukos, S.: Active learning for statistical natural language parsing. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 120–127. Association for Computational Linguistics (2002)
Wann, S., Dras, M., Dale, R., Paris, C.: Improving grammaticality in statistical sentence generation: Introducing a dependency spanning tree algorithm with an argument satisfaction model. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, pp. 852–860. Association for Computational Linguistics (2009)
Xu, P., Kang, J., Ringgaard, M., Och, F.: Using a dependency parser to improve smt for subject-object-verb languages. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 245–253. Association for Computational Linguistics (2009)
Zhang, Y., Clark, S.: A tale of two parsers: investigating and combining graph-based and transition-based dependency parsing using beam-search. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 562–571. Association for Computational Linguistics (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Jain, S., Jain, N., Agrawal, B., Sangal, R. (2015). Employing Oracle Confusion for Parse Quality Estimation. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2015. Lecture Notes in Computer Science(), vol 9041. Springer, Cham. https://doi.org/10.1007/978-3-319-18111-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-18111-0_17
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18110-3
Online ISBN: 978-3-319-18111-0
eBook Packages: Computer ScienceComputer Science (R0)