Abstract
The Web of Data is constantly growing in terms of covered domains, applied vocabularies, and number of triples. A high level of data quality is in the best interest of any data consumer.
Linked Data publishers can use various data quality evaluation tools prior to publication of their datasets. But nevertheless, most inconsistencies only become obvious when the data is processed in applications and presented to the end users. Therefore, it is not only the responsibility of the original data publishers to keep their data tidy, but progresses to become a mission for all distributors and consumers of Linked Data, too.
My main research topic is the inspection of feedback mechanisms for Linked Data cleansing in open knowledge bases. This work includes a change request vocabulary, the aggregation of change requests produced by various agents, versioning data resources, and consumer notification about changes. The individual components form the basis of a Linked Data Change Management framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnold, S.E.: Information manufacturing: The road to database quality. Database 15(5), 32–39 (1992)
Auer, S., Bühmann, L., Dirschl, C., Erling, O., Hausenblas, M., Isele, R., Lehmann, J., Martin, M., Mendes, P.N., van Nuffelen, B., Stadler, C., Tramp, S., Williams, H.: Managing the life-cycle of linked data with the LOD2 stack. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 1–16. Springer, Heidelberg (2012)
Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats – an extensible framework for high-performance dataset analytics. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 353–362. Springer, Heidelberg (2012)
Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 154–165 (2009)
de Sompel, H.V., Sanderson, R., Nelson, M.L., Balakireva, L., Shankar, H., Ainsworth, S.: An HTTP-based versioning mechanism for linked data. In: LDOW2010, Raleigh, USA, April 2010
Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic web. In: LDOW 2010. CEUR Workshop Proceedings. vol. 628 (2010)
Juran, J., Godfrey, A.: Juran’s quality handbook. Juran’s quality handbook, 5e. McGraw Hill (1999)
Knuth, M., Hercher, J., Sack, H.: Collaboratively patching linked data. In: USEWOD 2012, Lyon, France, April 2012
Knuth, M., Sack, H.: Data cleansing consolidation with PatchR. In: ESWC2014, Best Poster Award, May 2014
Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen, R., Zaveri, A.: Test-driven evaluation of linked data quality. In: WWW2014 (2014)
Kontokostas, D., Zaveri, A., Auer, S., Lehmann, J.: TripleCheckMate: a tool for crowdsourcing the quality assessment of linked data. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2013. CCIS, vol. 394, pp. 265–272. Springer, Heidelberg (2013)
Orr, K.: Data quality and systems theory. Communications of the ACM 41(2), 66–71 (1998)
Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013)
Singh, R., Singh, K.: A descriptive classification of causes of data quality problems in data warehousing. International Journal of Computer Science Issues 7(3), 41–50 (2010)
Waitelonis, J., Ludwig, N., Knuth, M., Sack, H.: WhoKnows? - evaluating linked data heuristics with a quiz that cleans up DBpedia. International Journal of Interactive Technology and Smart Education (ITSE) 8(3), 236–248 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Knuth, M. (2015). Linked Data Cleansing and Change Management. In: Lambrix, P., et al. Knowledge Engineering and Knowledge Management. EKAW 2014. Lecture Notes in Computer Science(), vol 8982. Springer, Cham. https://doi.org/10.1007/978-3-319-17966-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-17966-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17965-0
Online ISBN: 978-3-319-17966-7
eBook Packages: Computer ScienceComputer Science (R0)