Nothing Special   »   [go: up one dir, main page]

Skip to main content

Linked Data Cleansing and Change Management

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8982))

  • 1266 Accesses

Abstract

The Web of Data is constantly growing in terms of covered domains, applied vocabularies, and number of triples. A high level of data quality is in the best interest of any data consumer.

Linked Data publishers can use various data quality evaluation tools prior to publication of their datasets. But nevertheless, most inconsistencies only become obvious when the data is processed in applications and presented to the end users. Therefore, it is not only the responsibility of the original data publishers to keep their data tidy, but progresses to become a mission for all distributors and consumers of Linked Data, too.

My main research topic is the inspection of feedback mechanisms for Linked Data cleansing in open knowledge bases. This work includes a change request vocabulary, the aggregation of change requests produced by various agents, versioning data resources, and consumer notification about changes. The individual components form the basis of a Linked Data Change Management framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold, S.E.: Information manufacturing: The road to database quality. Database 15(5), 32–39 (1992)

    Google Scholar 

  2. Auer, S., Bühmann, L., Dirschl, C., Erling, O., Hausenblas, M., Isele, R., Lehmann, J., Martin, M., Mendes, P.N., van Nuffelen, B., Stadler, C., Tramp, S., Williams, H.: Managing the life-cycle of linked data with the LOD2 stack. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 1–16. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats – an extensible framework for high-performance dataset analytics. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 353–362. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 154–165 (2009)

    Article  Google Scholar 

  5. de Sompel, H.V., Sanderson, R., Nelson, M.L., Balakireva, L., Shankar, H., Ainsworth, S.: An HTTP-based versioning mechanism for linked data. In: LDOW2010, Raleigh, USA, April 2010

    Google Scholar 

  6. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic web. In: LDOW 2010. CEUR Workshop Proceedings. vol. 628 (2010)

    Google Scholar 

  7. Juran, J., Godfrey, A.: Juran’s quality handbook. Juran’s quality handbook, 5e. McGraw Hill (1999)

    Google Scholar 

  8. Knuth, M., Hercher, J., Sack, H.: Collaboratively patching linked data. In: USEWOD 2012, Lyon, France, April 2012

    Google Scholar 

  9. Knuth, M., Sack, H.: Data cleansing consolidation with PatchR. In: ESWC2014, Best Poster Award, May 2014

    Google Scholar 

  10. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen, R., Zaveri, A.: Test-driven evaluation of linked data quality. In: WWW2014 (2014)

    Google Scholar 

  11. Kontokostas, D., Zaveri, A., Auer, S., Lehmann, J.: TripleCheckMate: a tool for crowdsourcing the quality assessment of linked data. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2013. CCIS, vol. 394, pp. 265–272. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Orr, K.: Data quality and systems theory. Communications of the ACM 41(2), 66–71 (1998)

    Article  MathSciNet  Google Scholar 

  13. Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Singh, R., Singh, K.: A descriptive classification of causes of data quality problems in data warehousing. International Journal of Computer Science Issues 7(3), 41–50 (2010)

    Google Scholar 

  15. Waitelonis, J., Ludwig, N., Knuth, M., Sack, H.: WhoKnows? - evaluating linked data heuristics with a quiz that cleans up DBpedia. International Journal of Interactive Technology and Smart Education (ITSE) 8(3), 236–248 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Knuth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Knuth, M. (2015). Linked Data Cleansing and Change Management. In: Lambrix, P., et al. Knowledge Engineering and Knowledge Management. EKAW 2014. Lecture Notes in Computer Science(), vol 8982. Springer, Cham. https://doi.org/10.1007/978-3-319-17966-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17966-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17965-0

  • Online ISBN: 978-3-319-17966-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics