Nothing Special   »   [go: up one dir, main page]

Skip to main content

Climate Hazards and Critical Infrastructures Resilience

  • Reference work entry
  • First Online:
Encyclopedia of GIS

Abstract

Weather and hydrological extremes, which may be exacerbated by climate variability and change, severely stressed natural, engineered, and human systems. What makes these climate hazards particularly worrisome, however, is their rapidly changing nature, along with our lack of understanding of those hazard attributes that may matter the most for impact analyses. Thus, our understanding of climate variables is less reliable at finer resolutions, and our insights are less credible for extremes such as floods, droughts, hurricanes, and tornadoes. The interaction of climate hazards with increasing vulnerability, for example, owing to aging of infrastructures, and growing exposure, for example, owing to population growth and increasing rates of urbanization, enhances the challenge. The impacts of climate hazards, and hence preparedness and management of natural hazards as well as climate adaptation and to a great extent mitigation, depend critically on the state of infrastructures. Probabilistic risk assessments, an approach based on threat, vulnerability, and consequences, have long been used to prioritize engineering solutions and resource allocations for developing new or retrofitting existing infrastructures. However, there is a growing realization that a broader community and regional resilience centric perspective may be necessary. The new perspective needs to consider the essential functionality enabled by the infrastructures, as well as brittleness, recovery potential, and risks in terms of those functions. In addition, the perspective would need to consider a holistic framework, which embraces the visualization of critical functions and cascading failures across infrastructure sectors to novel engineering design and standards, along with economic incentives and metrics as well as best practices in organization and governance relevant for preparedness and response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelghany KF, Shah SS, Raina S, Abdelghany AF (2004) A model for projecting flight delays during irregular operation conditions. J Air Transp Manag 10:385–394. doi:10.1016/j.jairtraman.2004.06.008

    Article  Google Scholar 

  • Aerts JCJH, Botzen WJW, Emanuel K, Lin N, Moel H de, Michel-Kerjan EO (2014) Evaluating flood resilience strategies for coastal megacities. Science 344: 473–475. doi:10.1126/science.1248222

    Google Scholar 

  • Albert R, Jeong H, Barabási A-L (2000) The Internet’s Achilles’ Heel: error and attack tolerance of complex networks. Nature 406:200–0

    Google Scholar 

  • Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464:1025–1028. doi:10.1038/nature08932

    Google Scholar 

  • Disaster Resilience: A National Imperative (2015) [Internet]. [cited 1 Jul 2015]. Available: http://www.nap.edu/openbook.php?record_id=13457

  • Fisher L (2015) Disaster responses: More than 70 ways to show resilience. Nature 518:35–35. doi:10.1038/518035a

    Article  Google Scholar 

  • FlightAware – Flight Tracker/Flight Status/Flight Tracking. In: FlightAware [Internet]. [cited 1 Jul 2015]. Available: http://flightaware.com/

  • FlightStats – Global Flight Tracker, Status Tracking and Airport Information [Internet]. [cited 1 Jul 2015]. Available: http://www.flightstats.com/go/Home/home.do

  • Ganguly AR, Steinhaeuser K, Erickson DJ, Branstetter M, Parish ES, Singh N et al (2009) Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves. Proc Natl Acad Sci 106:15555–15559. doi:10.1073/pnas.0904495106

    Google Scholar 

  • Ghosh S, Mujumdar PP (2008) Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv Water Resour 31:132–146. doi:10.1016/j.advwatres.2007.07.005

    Article  Google Scholar 

  • Ghosh S, Das D, Kao S-C, Ganguly AR (2012) Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nat Clim Change 2:86–91. doi:10.1038/nclimate1327

    Article  Google Scholar 

  • Guimerà R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci USA 102:7794–7799 doi:10.1073/pnas.0407994102

    Article  MathSciNet  MATH  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Hernandez-Fajardo I, Dueñas-Osorio L (2013) Probabilistic study of cascading failures in complex interdependent lifeline systems. Reliab Eng Syst Saf 111:260–272. doi:10.1016/j.ress.2012.10.012

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change [Internet]. Available: https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf

  • IPCC (2014a) Climate change 2014 – impacts, adaptation and vulnerability: part A: global and sectoral aspects [Internet]. Cambridge University Press. Available: http://www.cambridge.org/us/academic/subjects/earth-and-environmental-science/climatology-and-climate-change/climate-change-2014-impacts-adaptation-and-vulnerability-part-global-and-sectoral-aspects-working-group-ii-contribution-ipcc-fifth-assessment-report-volume-1?format=PB

  • IPCC (2014b) Climate change 2014 – impacts, adaptation and vulnerability: part B: regional aspects [Internet]. Cambridge University Press. Available: http://www.cambridge.org/us/academic/subjects/earth-and-environmental-science/climatology-and-climate-change/climate-change-2014-impacts-adaptation-and-vulnerability-part-b-regional-aspects-working-group-ii-contribution-ipcc-fifth-assessment-report-volume-2?format=PB#contentsTabAnchor

  • Jarrah AIZ, Yu G, Krishnamurthy N, Rakshit A (1993) A decision support framework for airline flight cancellations and delays. Transp Sci 27:266–280. doi:10.1287/trsc.27.3.266

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077 < 0437:TNYRP > 2.0.CO;2

    Google Scholar 

  • Koç Y, Warnier M, Kooij RE, Brazier FMT (2013) An entropy-based metric to quantify the robustness of power grids against cascading failures. Saf Sci 59:126–134. doi:10.1016/j.ssci.2013.05.006

    Article  Google Scholar 

  • Linkov I, Bridges T, Creutzig F, Decker J, Fox-Lent C, Kröger W et al (2014) Changing the resilience paradigm. Nat Clim Change 4:407–409. doi:10.1038/nclimate2227

    Google Scholar 

  • Palmer TN, Shutts GJ, Hagedorn R, Doblas-Reyes FJ, Jung T, Leutbecher M (2005) Representing model uncertainty in weather and climate prediction. Annu Rev Earth Planet Sci 33:163–193. doi:10.1146/annurev.earth.33.092203.122552

    Article  MathSciNet  Google Scholar 

  • Salvi K, Ghosh S, Ganguly AR (2015) Credibility of statistical downscaling under nonstationary climate. Clim Dyn 1–33 doi:10.1007/s00382-015-2688-9

    Google Scholar 

  • Sen P, Dasgupta S, Chatterjee A, Sreeram PA, Mukherjee G, Manna SS (2003) Small-world properties of the Indian railway network. Phys Rev E 67:036106. doi:10.1103/PhysRevE.67.036106

    Article  Google Scholar 

  • Solé RV, Rosas-Casals M, Corominas-Murtra B, Valverde S (2008) Robustness of the European power grids under intentional attack. Phys Rev E 77:026102. doi:10.1103/PhysRevE.77.026102

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc Lond Math Phys Eng Sci 365:2053–2075. doi:10.1098/rsta.2007.2076

    Article  MathSciNet  Google Scholar 

  • Vespignani A (2010) Complex networks: the fragility of interdependency. Nature 464:984–985. doi:10.1038/464984a

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Udit Bhatia or Auroop R. Ganguly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Bhatia, U. et al. (2017). Climate Hazards and Critical Infrastructures Resilience. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1634

Download citation

Publish with us

Policies and ethics