Abstract
Leakage resilient cryptography designs systems to withstand partial adversary knowledge of secret state. Ideally, leakage-resilient systems withstand current and future attacks; restoring confidence in the security of implemented cryptographic systems. Understanding the relation between classes of leakage functions is an important aspect.
In this work, we consider the memory leakage model, where the leakage class contains functions over the system’s entire secret state. Standard limitations include functions with bounded output length, functions that retain (pseudo) entropy in the secret, and functions that leave the secret computationally unpredictable.
Standaert, Pereira, and Yu (Crypto, 2013) introduced a new class of leakage functions they call simulatable leakage. A leakage function is simulatable if a simulator can produce indistinguishable leakage without access to the true secret state. We extend their notion to general applications and consider two versions. For weak simulatability: the simulated leakage must be indistinguishable from the true leakage in the presence of public information. For strong simulatability, this requirement must also hold when the distinguisher has access to the true secret state. We show the following:
-
Weakly simulatable functions retain computational unpredictability.
-
Strongly simulatability functions retain pseudoentropy.
-
There are bounded length functions that are not weakly simulatable.
-
There are weakly simulatable functions that remove pseudoentropy.
-
There are leakage functions that retain computational unpredictability are not weakly simulatable.
The Lincoln Laboratory portion of this work was sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Networks 48(5), 701–716 (2005)
Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer, Heidelberg (2006)
Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 200–215. Springer, Heidelberg (2003)
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)
Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014)
Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 621–630. ACM (2009)
Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing 38(1), 97–139 (2008)
Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302 (2008)
Faust, S., et al.: Signature schemes secure against hard-to-invert leakage. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 98–115. Springer, Heidelberg (2012)
Faust, S., et al.: Protecting circuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010)
Fuller, B.: Strong Key Derivation from Noisy Sources. PhD thesis, Boston University, 111 Cummington Ave, Boston, MA 02215 (January 2015)
Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1984), Preliminary version in FOCS 1984
Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acoustic cryptanalysis. IACR Cryptology ePrint Archive, 2013:857 (2013)
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC 2011, pp. 99–108. ACM, New York (2011)
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)
Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007)
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)
Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)
Krenn, S., Pietrzak, K., Wadia, A.: A counterexample to the chain rule for conditional hill entropy. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 23–39. Springer, Heidelberg (2013)
Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)
Lamport, L.: Constructing digital signatures from a one-way function. Technical report, Technical Report CSL-98, SRI International (1979)
Longo, J., et al.: Simulatable leakage: Analysis, pitfalls, and new constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 223–242. Springer, Heidelberg (2014)
Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)
Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System Sciences, 43–52 (1993)
Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006)
Reyzin, L.: Some notions of entropy for cryptography. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 138–142. Springer, Heidelberg (2011)
Skórski, M.: Modulus computational entropy. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 179–199. Springer, Heidelberg (2014)
Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013)
Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and countermeasures. Journal of Cryptology 23(1), 37–71 (2010)
Yao, A.C.-C.: Theory and applications of trapdoor functions (extended abstract). In: FOCS, pp. 80–91 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Fuller, B., Hamlin, A. (2015). Unifying Leakage Classes: Simulatable Leakage and Pseudoentropy. In: Lehmann, A., Wolf, S. (eds) Information Theoretic Security. ICITS 2015. Lecture Notes in Computer Science(), vol 9063. Springer, Cham. https://doi.org/10.1007/978-3-319-17470-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-17470-9_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17469-3
Online ISBN: 978-3-319-17470-9
eBook Packages: Computer ScienceComputer Science (R0)