Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing Spatial Perception and User Experience in Video Games with Volumetric Shadows

  • Conference paper
  • First Online:
Computer-Human Interaction. Cognitive Effects of Spatial Interaction, Learning, and Ability (OzCHI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8433))

Included in the following conference series:

Abstract

In this paper, we investigate the use of volumetric shadows for enhancing three-dimensional perception and action in third-person motion games. They offer an alternative to previously studied cues and visual guides. Our preliminary survey revealed that from the games that require Kinect, 37 % rely primarily on a third-person view and 9 % on a first-person view. We conducted a user study where 30 participants performed object reaching, interception, and aiming tasks in six different graphical modes of a video game that was controlled using a Kinect sensor and PlayStation Move controllers. The study results indicate that different volumetric shadow cues can affect both the user experience and the gameplay performance positively or negatively, depending on the lighting setup. Qualitative user experience analysis shows that playing was found to be most easy and fluent in a typical virtual reality setting with stereo rendering and flat surface shadows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cutting, J.E., Vishton, P.M.: Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. Percept. space motion 5, 69–117 (1995)

    Article  Google Scholar 

  2. Hubona, G.S., Wheeler, P.N., Shirah, G.W., Brandt, M.: The relative contributions of stereo, lighting, and background scenes in promoting 3D depth visualization. ACM Trans. Comput. Hum. Interact. 6, 214–242 (1999)

    Article  Google Scholar 

  3. Wanger, L.R., Ferwerda, J.A., Greenberg, D.P.: Perceiving spatial relationships in computer-generated images. IEEE Comput. Graph. Appl. 12, 44–58 (1992)

    Article  Google Scholar 

  4. Heinen, T., Vinken, P.M.: Monocular and binocular vision in the performance of a complex skill. J. Sports Sci. Med. 10, 520–527 (2011)

    Google Scholar 

  5. Laby, D.M., Kirschen, D.G., Pantall, P.: The visual function of olympic-level athletes—an initial report. Eye Contact Lens Sci. Clin. Pract. 37, 116–122 (2011)

    Article  Google Scholar 

  6. Bennett, S., van der Kamp, J., Savelsbergh, G.J.P., Davids, K.: Discriminating the role of binocular information in the timing of a one-handed catch. Exp. Brain Res. 135, 341–347 (2000)

    Article  Google Scholar 

  7. Van Hof, P., van der Kamp, J., Savelsbergh, G.J.P.: Three- to eight-month-old infants’ catching under monocular and binocular vision. Hum. Mov. Sci. 25, 18–36 (2006)

    Article  Google Scholar 

  8. Mazyn, L., Lenoir, M., Montagne, G., Delaey, C., Savelsbergh, G.: Stereo vision enhances the learning of a catching skill. Exp. Brain Res. 179, 723–726 (2007)

    Article  Google Scholar 

  9. Bulson, R., Ciuffreda, K.J., Ludlam, D.P.: Effect of binocular vs. monocular viewing on golf putting accuracy. J. Behav. Optom. 20, 31–34 (2009)

    Google Scholar 

  10. Wanger, L.R.: The effect of shadow quality on the perception of spatial relationships in computer generated imagery. In: Proceedings of 1992 Symposium on Interactive 3D Graphics, pp. 39–42 (1992)

    Google Scholar 

  11. Hubona, G.S., Shirah, G.W., Jennings, D.K.: The effects of cast shadows and stereopsis on performing computer-generated spatial tasks. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34, 483–493 (2004)

    Article  Google Scholar 

  12. Glueck, M., Crane, K., Anderson, S., Rutnik, A., Khan, A.: Multiscale 3D reference visualization. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pp. 225–232 (2009)

    Google Scholar 

  13. Teather, R.J., Stuerzlinger, W.: Guidelines for 3D positioning techniques. In: Proceedings of the Conference on Future Play, pp. 61–68. ACM, New York (2007)

    Google Scholar 

  14. Boritz, J., Booth, K.S.: A study of interactive 3D point location in a computer simulated virtual environment. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 181–187. ACM, New York (1997)

    Google Scholar 

  15. Arthur, K.W., Booth, K.S., Ware, C.: Evaluating 3D task performance for fish tank virtual worlds. ACM Trans. Inf. Syst. 11, 239–265 (1993)

    Article  Google Scholar 

  16. Schmidt, R.A., Wrisberg, C.N.: Motor Learning and Performance. Human Kinetics Publishers, Champaign (2004)

    Google Scholar 

  17. Schneider, W., Shiffrin, R.M.: Controlled and automatic human information processing: I. Detection, search, and attention. Psychol. Rev. 84, 1 (1977)

    Article  Google Scholar 

  18. Oshita, M.: Motion-capture-based avatar control framework in third-person view virtual environments. In: Proceedings of the ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, p. 2. ACM (2006)

    Google Scholar 

  19. Wikipedia: List of Kinect games. http://en.wikipedia.org/wiki/Kinect_games

  20. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 135–142 (1993)

    Google Scholar 

  21. Nishita, T., Miyawaki, Y., Nakamae, E.: A shading model for atmospheric scattering considering luminous intensity distribution of light sources. In: ACM SIGGRAPH Computer Graphics, pp. 303–310 (1987)

    Google Scholar 

  22. Wyman, C., Ramsey, S.: Interactive volumetric shadows in participating media with single-scattering. In: IEEE Symposium on Interactive Ray Tracing, pp. 87–92 (2008)

    Google Scholar 

  23. Cerezo, E., Pérez, F., Pueyo, X., Seron, F.J., Sillion, F.X.: A survey on participating media rendering techniques. Vis. Comput. 21, 303–328 (2005)

    Article  Google Scholar 

  24. Ament, M., Sadlo, F., Weiskopf, D.: Ambient volume scattering. IEEE Trans. Vis. Comput. Graph. 19, 2936–2945 (2013)

    Article  Google Scholar 

  25. Yang, F., Li, Q., Xiang, D., Cao, Y., Tian, J.: A versatile optical model for hybrid rendering of volume data. IEEE Trans. Vis. Comput. Graph. 18, 925–937 (2012)

    Article  Google Scholar 

  26. Ropinski, T., Doring, C., Rezk-Salama, C.: Interactive volumetric lighting simulating scattering and shadowing. In: IEEE Pacific Visualization Symposium, pp. 169–176 (2010)

    Google Scholar 

  27. Bruckner, S., Groller, M.E.: Enhancing depth-perception with flexible volumetric halos. IEEE Trans. Vis. Comput. Graph. 13, 1344–1351 (2007)

    Article  Google Scholar 

  28. Tao, Y., Lin, H., Dong, F., Clapworthy, G.: Opacity volume based halo generation for enhancing depth perception. In: 2011 12th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), pp. 418–422. IEEE (2011)

    Google Scholar 

  29. Lindemann, F., Ropinski, T.: About the influence of illumination models on image comprehension in direct volume rendering. IEEE Trans. Vis. Comput. Graph. 17, 1922–1931 (2011)

    Article  Google Scholar 

  30. Boucheny, C., Bonneau, G.-P., Droulez, J., Thibault, G., Ploix, S.: A perceptive evaluation of volume rendering techniques. ACM Trans. Appl. Percept. (TAP) 5, 23 (2009)

    Google Scholar 

  31. Šoltészová, V., Patel, D., Viola, I.: Chromatic shadows for improved perception. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering, pp. 105–116. ACM (2011)

    Google Scholar 

  32. Wang, L., Kaufman, A.E.: Lighting system for visual perception enhancement in volume rendering. IEEE Trans. Vis. Comput. Graph. 19, 67–80 (2013)

    Article  MATH  Google Scholar 

  33. Knez, I., Niedenthal, S.: Lighting in digital game worlds: effects on affect and play performance. CyberPsychology Behav. 11, 129–137 (2008)

    Article  Google Scholar 

  34. El-Nasr, M.S., Horswill, I.: Automating lighting design for interactive entertainment. Comput. Entertain. 2, 15 (2004)

    Article  Google Scholar 

  35. Lombard, M., Jones, M.T.: Identifying the (tele)presence literature. PsychNology J. 5, 197–206 (2007)

    Google Scholar 

  36. IJsselsteijn, W., de Ridder, H., Freeman, J., Avons, S.E., Bouwhuis, D.: Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence Teleoperators Virtual Environ. 10, 298–311 (2001)

    Article  Google Scholar 

  37. Takatalo, J., Kawai, T., Kaistinen, J., Nyman, G., Häkkinen, J.: User experience in 3D stereoscopic games. Media Psychol. 14, 387–414 (2011)

    Article  Google Scholar 

  38. Snow, M.P., Williges, R.C.: Empirical Models based on free-modulus magnitude estimation of perceived presence in virtual environments. Hum. Factors J. Hum. Factors Ergon. Soc. 40, 386–402 (1998)

    Article  Google Scholar 

  39. International Society for Presence Research: The Concept of Presence: Explication Statement. http://ispr.info/

  40. Takatalo, J., Nyman, G., Laaksonen, L.: Components of human experience in virtual environments. Comput. Hum. Behav. 24, 1–15 (2008)

    Article  Google Scholar 

  41. Csikszentmihalyi, M.: Beyond Boredom and Anxiety. Jossey-Bass Publishers, San Francisco (1975)

    Google Scholar 

  42. Takatalo, J., Häkkinen, J.: Profiling user experience in digital games with the flow model. In: Proceedings of the Nordic Conference on Human-Computer Interaction (NordiCHI 14), Helsinki, Finland, pp. 26–30 (2014)

    Google Scholar 

  43. Ryan, R., Rigby, C., Przybylski, A.: The motivational pull of video games: a self-determination theory approach. Motiv. Emot. 30, 344–360 (2006)

    Article  Google Scholar 

  44. Takala, T.M., Pugliese, R., Rauhamaa, P., Takala, T.: Reality-based user interface system (RUIS). In: Proceedings of the IEEE Symposium on 3D User Interfaces 2011, pp. 141–142 (2011)

    Google Scholar 

  45. Dey, A.: Incomplete Block Designs. World Scientific Publishing, Singapore (2010)

    Book  MATH  Google Scholar 

  46. Takatalo, J., et al.: Psychologically-based and content-oriented experience in entertainment virtual environments (2011)

    Google Scholar 

  47. Takatalo, J., Häkkinen, J., Kaistinen, J., Nyman, G.: User experience in digital games: differences between laboratory and home. Simul. Gaming 42, 656–673 (2010)

    Google Scholar 

  48. Särkelä, H., Takatalo, J., May, P., Laakso, M., Nyman, G.: The movement patterns and the experiential components of virtual environments. Int. J. Hum Comput Stud. 67, 787–799 (2009)

    Article  Google Scholar 

  49. Takatalo, J., Häkkinen, J., Kaistinen, J., Nyman, G.: Presence, involvement, and flow in digital games. In: Bernhaupt, R. (ed.) Evaluating User Experience in Games, pp. 23–46. Springer, London (2010)

    Chapter  Google Scholar 

  50. Greenacre, M.J.: Theory and applications of correspondence analysis. Academic press, London (1984)

    MATH  Google Scholar 

  51. Lang, P.J.: Behavioral treatment and bio-behavioral assessment: Computer applications. In: Sidowski, J.B., Johnson, J.H., Williams, T.A. (eds.) Technology in Mental Health Care Delivery Systems, pp. 119–137. Ablex Publishing Corporation, Norwood (1980)

    Google Scholar 

  52. Laméris Ootech: TNO Test for Stereoscopic Vision. Netherlands Organization for Applied Scientific Research (1972)

    Google Scholar 

  53. Schor, C.M., Wood, I.: Disparity range for local stereopsis as a function of luminance spatial frequency. Vis. Res. 23, 1649–1654 (1983)

    Article  Google Scholar 

  54. Ratan, R.: Self-presence, explicated: body, emotion, and identity. In: Luppicini, R. (ed.) Handbook of Research on Technoself: Identity in a Technological Society, p. 322. Information Science Reference, Hershey (2013)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by Finnish Doctoral Program in User-Centered Information Technology (UCIT) and Helsinki Institute of Science and Technology Studies (HIST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuukka M. Takala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Takala, T.M., Hämäläinen, P., Matveinen, M., Simonen, T., Takatalo, J. (2015). Enhancing Spatial Perception and User Experience in Video Games with Volumetric Shadows. In: Wyeld, T., Calder, P., Shen, H. (eds) Computer-Human Interaction. Cognitive Effects of Spatial Interaction, Learning, and Ability. OzCHI 2013. Lecture Notes in Computer Science(), vol 8433. Springer, Cham. https://doi.org/10.1007/978-3-319-16940-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16940-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16939-2

  • Online ISBN: 978-3-319-16940-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics