Nothing Special   »   [go: up one dir, main page]

Skip to main content

Low Rank Representation on Grassmann Manifolds

  • Conference paper
  • First Online:
Computer Vision – ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9003))

Included in the following conference series:

Abstract

Low-rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. One of its successful applications is subspace clustering which means data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is naturally described as a clustering problem on Grassmann manifold. The novelty of this paper is to generalize LRR on Euclidean space into the LRR model on Grassmann manifold. The new method has many applications in computer vision tasks. The paper conducts the experiments over two real world examples, clustering handwritten digits and clustering dynamic textures. The experiments show the proposed method outperforms a number of existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As the manifold is generally no longer linear, so the linear combination on the manifold should be implemented via exp and log operations on the manifold. We ignore this for the simplicity of presenting our idea.

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  2. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  3. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  4. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17, 53–69 (2008)

    Article  MathSciNet  Google Scholar 

  5. Yang, J., Wang, Z., Lin, Z., Huang, T.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21, 3467–3478 (2012)

    Article  MathSciNet  Google Scholar 

  6. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: International Conference on Machine Learning, pp. 663–670 (2010)

    Google Scholar 

  7. Liu, G., Lin, Z., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 171–184 (2013)

    Article  Google Scholar 

  8. Cheng, B., Liu, G., Wang, J., Huang, Z., Yan, S.: Multi-task low-rank affinity pursuit for image segmentation. In: International Conference on Computer Vision, pp. 2439–2446 (2011)

    Google Scholar 

  9. Lang, C., Liu, G., Yu, J., Yan, S.: Saliency detection by multitask sparsity pursuit. IEEE Trans. Image Process. 21, 1327–1338 (2012)

    Article  MathSciNet  Google Scholar 

  10. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Multi-task low-rank affinity pursuit for image segmentation. In: Advances in Neural Information Processing Systems, vol. 22 (2009)

    Google Scholar 

  11. Candés, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 11 (2011). Article 11

    Article  MathSciNet  Google Scholar 

  12. Elhamifar, E., Vidal, R.: Subspace clustering. IEEE Sig. Process. Mag. 28, 52–68 (2011)

    Article  Google Scholar 

  13. Wang, R., Shan, S., Chen, X., Gao, W.: Manifold-manifold distance with application to face recognition based on image set. In: Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  14. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  15. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Optim. Methods Softw. 290, 2319–2323 (2000)

    Google Scholar 

  16. He, X., Niyogi, P.: Locality Preserving Projections. Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2003)

    Google Scholar 

  17. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems, vol. 14. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  18. Absil, P.A., Mahony, R., Sepulchre, R.: Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Appl. Math. 80, 199–220 (2004)

    Article  MathSciNet  Google Scholar 

  19. Srivastava, A., Klassen, E.: Bayesian and geometric subspace tracking. Adv. Appl. Probab. 36, 43–56 (2004)

    Article  MathSciNet  Google Scholar 

  20. Cetingul, H., Vidal, R.: Intrinsic mean shift for clustering on Stiefel and Grassmann manifolds. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1896–1902 (2009)

    Google Scholar 

  21. Hamm, J., Lee, D.: Grassmann discriminant analysis: a unifying view on sub-space-based learning. In: International Conference on Machine Learning, pp. 376–383 (2008)

    Google Scholar 

  22. Harandi, M., Shirazi, S., Sanderson, C., Lovell, B.: Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. In: Computer Vision and Pattern Recognition. pp. 2705–2712 (2011)

    Google Scholar 

  23. Harandi, M., Sanderson, C., Shen, C., Lovell, B.: Dictionary learning and sparse coding on grassmann manifolds: an extrinsic solution. In: International Conference on Computer Vision, vol. 14, pp. 3120–3127 (2013)

    Google Scholar 

  24. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)

    Google Scholar 

  25. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2765–2781 (2013)

    Article  Google Scholar 

  26. Xu, C., Wang, T., Gao, J., Cao, S., Tao, W., Liu, F.: An ordered-patch-based image classification approach on the image Grassmannian manifold. IEEE Trans. Neural Networks Learn. Syst. 25, 728–737 (2014)

    Article  Google Scholar 

  27. Absil, P., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  28. Helmke, J.T., Hüper, K.: Newtons’s method on Grassmann manifolds. Technical report (2007). Preprint: [ arXiv:0709.2205]

  29. Kolda, G., Bader, B.: Tensor decomposition and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  30. Gentle, J.E.: Numerical Linear Algebra for Applications in Statistics. Springer, New York (1998)

    Book  Google Scholar 

  31. Shen, Y., Wen, Z., Zhang, Y.: Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization. Optim. Methods Softw. 29, 239–263 (2014)

    Article  MathSciNet  Google Scholar 

  32. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2008). http://www-stat.stanford.edu/candes/papers/SVT_OnlinePDF.pdf

    Article  MathSciNet  Google Scholar 

  33. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  34. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  35. Ghanem, B., Ahuja, N.: Maximum margin distance learning for dynamic texture recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 223–236. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  36. Harandi, M.T., Sanderson, C., Hartley, R., Lovell, B.C.: Sparse coding and dictionary learning for symmetric positive definite matrices: a kernel approach. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 216–229. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  37. Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29, 915–928 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The research project is supported by the Australian Research Council (ARC) through the grant DP130100364 and also partially supported by National Natural Science Foundation of China under Grant No.61390510, 61133003, 61370119, 61171169, 61227004 and Beijing Natural Science Foundation No.4132013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbin Gao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (pdf 142 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, B., Hu, Y., Gao, J., Sun, Y., Yin, B. (2015). Low Rank Representation on Grassmann Manifolds. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision – ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16865-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16864-7

  • Online ISBN: 978-3-319-16865-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics