Nothing Special   »   [go: up one dir, main page]

Skip to main content

Biomimicry of Crowd Evacuation with a Slime Mould Cellular Automaton Model

  • Chapter
Computational Intelligence, Medicine and Biology

Abstract

Evacuation is an imminent movement of people away from sources of danger. Evacuation in highly structured environments, e.g. building, requires advance planning and large-scale control. Finding a shortest path towards exit is a key for the prompt successful evacuation. Slime mould Physarum polycephalum is proven to be an efficient path solver: the living slime mould calculates optimal paths towards sources of attractants yet maximizes distances from repellents. The search strategy implemented by the slime mould is straightforward yet efficient. The slime mould develops may active traveling zones, or pseudopodia, which propagates along different, alternative, routes the pseudopodia close to the target loci became dominating and the pseudopodia propagating along less optimal routes decease. We adopt the slime mould’s strategy in a Cellular-Automaton (CA) model of a crowd evacuation. CA are massive-parallel computation tool capable for mimicking the Physarum’s behaviour. The model accounts for Physarum foraging process, the food diffusion, the organism’s growth, the creation of tubes for each organism, the selection of optimum path for each human and imitation movement of all humans at each time step towards near exit. To test the efficiency and robustness of the proposed CA model, several simulation scenarios were proposed proving that the model succeeds to reproduce sufficiently the Physarum’s inspiring behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adamatzky, A.: Physarum machine: Implementation of a kolmogorov-uspensky machine on a biological substrate. Parallel Processing Letters 17(4), 455–467 (2007)

    Article  MathSciNet  Google Scholar 

  2. Adamatzky, A.: Physarum machines: computers from slime mould, vol. 74. World Scientific, Singapore (2010)

    Google Scholar 

  3. Adamatzky, A.: Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Transactions on NanoBioscience 11(2), 131–134 (2012)

    Article  Google Scholar 

  4. Adamatzky, A.: Route 20, autobahn 7 and physarum polycephalum: Approximating longest roads in usa and germany with slime mould on 3d terrains. arXiv preprint arXiv:1211.0519. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics (2013) (in press)

    Google Scholar 

  5. Adamatzky, A., Jones, J.: Road planning with slime mould: if physarum built motorways it would route m6/m74 through newcastle. I. J. Bifurcation and Chaos 20(10), 3065–3084 (2010)

    Article  MathSciNet  Google Scholar 

  6. Adamatzky, A., Schumann, A.: Physarum spatial logic. New Mathematics and Natural Computation 07(03), 483–498 (2011)

    Article  MathSciNet  Google Scholar 

  7. Aubé, F., Shield, R.: Modeling the effect of leadership on crowd flow dynamics. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 601–611. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Bandini, S., Manzoni, S., Vizzari, G.: Situated cellular agents: A model to simulate crowding dynamics. IEICE Transactions on Information and Systems 87(3), 669–676 (2004)

    Google Scholar 

  9. Braun, A., Musse, S.R., de Oliveira, L.P.L., Bodmann, B.E.: Modeling individual behaviors in crowd simulation. In: 16th International Conference on Computer Animation and Social Agents, pp. 143–148. IEEE (2003)

    Google Scholar 

  10. Brogan, D.C., Hodgins, J.K.: Simulation level of detail for multiagent control. In: Proceedings of the first international joint conference on Autonomous agents and multiagent systems: part 1, pp. 199–206. ACM (2002)

    Google Scholar 

  11. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295(3), 507–525 (2001)

    Article  MATH  Google Scholar 

  12. Chenney, S.: Flow tiles. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 233–242. Eurographics Association (2004)

    Google Scholar 

  13. Chopard, B., Droz, M.: Cellular automata modeling of physical systems, vol. 122. Springer (1998)

    Google Scholar 

  14. Daoliang, Z., Lizhong, Y., Jian, L.: Exit dynamics of occupant evacuation in an emergency. Physica A: Statistical Mechanics and its Applications 363(2), 501–511 (2006)

    Article  Google Scholar 

  15. Feynman, R.P.: Simulating physics with computers. International Journal of Theoretical Physics 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  16. Georgoudas, I., Sirakoulis, G.C., Scordilis, E., Andreadis, I.: A cellular automaton simulation tool for modelling seismicity in the region of xanthi. Environmental Modelling & Software 22(10), 1455–1464 (2007)

    Article  Google Scholar 

  17. Georgoudas, I.G., Kyriakos, P., Sirakoulis, G.C., Andreadis, I.T.: An fpga implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields. Microprocessors and Microsystems 34(7), 285–300 (2010)

    Article  Google Scholar 

  18. Georgoudas, I.G., Sirakoulis, G.C., Andreadis, I.T.: A simulation tool for modelling pedestrian dynamics during evacuation of large areas. In: Maglogiannis, I., Karpouzis, K., Bramer, M. (eds.) Artificial Intelligence Applications and Innovations. IFIP, vol. 204, pp. 618–626. Springer, Heidelberg (2006)

    Google Scholar 

  19. Gunji, Y.P., Shirakawa, T., Niizato, T., Haruna, T.: Minimal model of a cell connecting amoebic motion and adaptive transport networks. Journal of Theoretical Biology 253(4), 659–667 (2008)

    Article  Google Scholar 

  20. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)

    Article  Google Scholar 

  21. Henderson, L.: The statistics of crowd fluids. Nature 229, 381–383 (1971)

    Article  Google Scholar 

  22. Henein, C.M., White, T.: Agent-based modelling of forces in crowds. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415, pp. 173–184. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Hoogendoorn, S.P.: Pedestrian travel behavior modeling. In: 10th International Conference on Travel Behavior Research, Lucerne (2003)

    Google Scholar 

  24. Jendrsczok, J., Ediger, P., Hoffmann, R.: A scalable configurable architecture for the massively parallel gca model. International Journal of Parallel, Emergent and Distributed Systems 24(4), 275–291 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jian, L., Lizhong, Y., Daoliang, Z.: Simulation of bi-direction pedestrian movement in corridor. Physica A: Statistical Mechanics and its Applications 354, 619–628 (2005)

    Article  Google Scholar 

  26. Jones, J.: Approximating the behaviours of physarum polycephalum for the construction and minimisation of synthetic transport networks. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 191–208. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Kalogeiton, V.S., Papadopoulos, D.P., Sirakoulis, G.C.: Hey physarum! can you perform slam? IJUC 10(4), 271–293 (2014)

    Google Scholar 

  28. Karafyllidis, I.: A model for the prediction of oil slick movement and spreading using cellular automata. Environment International 23(6), 839 – 850 (1997). doi: http://dx.doi.org/10.1016/S0160-41209700096-2

  29. Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecological Modelling 99(1), 87–97 (1997)

    Article  Google Scholar 

  30. Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecological Modelling 99(1), 87–97 (1997), doi: http://dx.doi.org/10.1016/S0304-38009601942-4

  31. Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Physical Review E 67(5) 056, 122 (2003)

    Google Scholar 

  32. Lindzey, G.E., Aronson, E.E. (eds.): The handbook of social psychology. Addison-Wesley (1968)

    Google Scholar 

  33. Liu, Y., Zhang, Z., Gao, C., Wu, Y., Qian, T.: A physarum network evolution model based on IBTM. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013, Part II. LNCS, vol. 7929, pp. 19–26. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  34. Mardiris, V., Sirakoulis, G.C., Mizas, C., Karafyllidis, I., Thanailakis, A.: A cad system for modeling and simulation of computer networks using cellular automata. IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews 38(2), 253–264 (2008)

    Article  Google Scholar 

  35. Milazzo, J.S., Rouphail, N.M., Hummer, J.E., Allen, D.P.: Effect of pedestrians on capacity of signalized intersections. Transportation Research Record: Journal of the Transportation Research Board 1646(1), 37–46 (1998)

    Article  Google Scholar 

  36. Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7(2), 152–164 (2001)

    Article  Google Scholar 

  37. Nakagaki, T., Yamada, H., Tóth, A.: Intelligence: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)

    Article  Google Scholar 

  38. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an amoeboid organism. Biophysical Chemistry 92(1), 47–52 (2001)

    Article  Google Scholar 

  39. Nakagaki, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction pattern in the i physarum plasmodium. Biophysical Chemistry 84(3), 195–204 (2000)

    Article  Google Scholar 

  40. Nishinari, K., Sugawara, K., Kazama, T., Schadschneider, A., Chowdhury, D.: Modelling of self-driven particles: Foraging ants and pedestrians. Physica A: Statistical Mechanics and its Applications 372(1), 132–141 (2006)

    Article  Google Scholar 

  41. Paris, S., Donikian, S.: Activity-driven populace: a cognitive approach to crowd simulation. IEEE Computer Graphics and Applications 29(4), 34–43 (2009)

    Article  Google Scholar 

  42. Perez, G.J., Tapang, G., Lim, M., Saloma, C.: Streaming, disruptive interference and power-law behavior in the exit dynamics of confined pedestrians. Physica A: Statistical Mechanics and its Applications 312(3), 609–618 (2002)

    Article  MATH  Google Scholar 

  43. Schultz, M., Lehmann, S., Fricke, H.: A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals. In: Pedestrian and Evacuation Dynamics 2005, pp. 369–375. Springer (2007)

    Google Scholar 

  44. Schumann, A., Adamatzky, A.: Toward semantical model of reaction-diffusion computing. Kybernetes 38(9), 1518–1531 (2009)

    Article  MathSciNet  Google Scholar 

  45. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5), 246–274 (2007)

    Article  Google Scholar 

  46. Shirakawa, T., Adamatzky, A., Gunji, Y.P., Miyake, Y.: On simultaneous construction of voronoi diagram and delaunay triangulation by physarum polycephalum. International Journal of Bifurcation and Chaos 19(09), 3109–3117 (2009)

    Article  Google Scholar 

  47. Shirakawa, T., Adamatzky, A., Gunji, Y.P., Miyake, Y.: On simultaneous construction of voronoi diagram and delaunay triangulation by physarum polycephalum. I. J. Bifurcation and Chaos 19(9), 3109–3117 (2009)

    Article  Google Scholar 

  48. Sirakoulis, G.C.: A tcad system for vlsi implementation of the cvd process using vhdl. Integration, the VLSI Journal 37(1), 63–81 (2004)

    Article  Google Scholar 

  49. Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2012. LNCS, vol. 7495. Springer, Heidelberg (2012)

    Google Scholar 

  50. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling 133(3), 209–223 (2000)

    Article  Google Scholar 

  51. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cad system for the construction and vlsi implementation of cellular automata algorithms using vhdl. Microprocessors and Microsystems 27(8), 381–396 (2003)

    Article  Google Scholar 

  52. Spezzano, G., Talia, D., Di Gregorio, S., Rongo, R., Spataro, W.: A parallel cellular tool for interactive modeling and simulation. IEEE Computational Science & Engineering 3(3), 33–43 (1996)

    Article  Google Scholar 

  53. Stephenson, S.L., Stempen, H., Hall, I.: Myxomycetes: a handbook of slime molds. Timber press Portland, Oregon (1994)

    Google Scholar 

  54. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. Journal of Theoretical Biology 244(4), 553 (2007)

    Article  MathSciNet  Google Scholar 

  55. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  56. Toffoli, T.: Cam: A high-performance cellular-automaton machine. Physica D: Nonlinear Phenomena 10(1), 195–204 (1984)

    Article  MathSciNet  Google Scholar 

  57. Tsompanas, M.A.I., Sirakoulis, G.C.: Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspiration & Biomimetics 7(3), 036,013 (2012)

    Google Scholar 

  58. Tsuda, S., Aono, M., Gunji, Y.P.: Robust and emergent physarum logical-computing. Biosystems 73(1), 45–55 (2004)

    Article  Google Scholar 

  59. Varas, A., Cornejo, M., Mainemer, D., Toledo, B., Rogan, J., Munoz, V., Valdivia, J.: Cellular automaton model for evacuation process with obstacles. Physica A: Statistical Mechanics and its Applications 382(2), 631–642 (2007)

    Article  Google Scholar 

  60. Vichniac, G.Y.: Simulating physics with cellular automata. Physica D: Nonlinear Phenomena 10(1), 96–116 (1984)

    Article  MathSciNet  Google Scholar 

  61. Vizzari, G., Manenti, L., Crociani, L.: Adaptive pedestrian behaviour for the preservation of group cohesion. Complex Adaptive Systems Modeling 1(1), 1–29 (2013)

    Article  Google Scholar 

  62. Von Neumann, J., Burks, A.W., et al.: Theory of self-reproducing automata. University of Illinois press Urbana (1966)

    Google Scholar 

  63. Weifeng, F., Lizhong, Y., Weicheng, F.: Simulation of bi-direction pedestrian movement using a cellular automata model. Physica A: Statistical Mechanics and its Applications 321(3), 633–640 (2003)

    Article  MATH  Google Scholar 

  64. Wilding, N.B., Trew, A., Hawick, K., Pawley, G.: Scientific modeling with massively parallel simd computers. Proceedings of the IEEE 79(4), 574–585 (1991)

    Article  Google Scholar 

  65. Wolfram, S.: Theory and applications of cellular automata. Advanced Series on Complex Systems. World Scientific Publication, Singapore (1986)

    Google Scholar 

  66. Yang, L., Zhao, D., Li, J., Fang, T.: Simulation of the kin behavior in building occupant evacuation based on cellular automaton. Building and Environment 40(3), 411–415 (2005)

    Article  Google Scholar 

  67. Yu, Y., Song, W.: Cellular automaton simulation of pedestrian counter flow considering the surrounding environment. Physical Review E 75(4), 046,112 (2007)

    Google Scholar 

  68. Yuan, W., Tan, K.H.: An evacuation model using cellular automata. Physica A: Statistical Mechanics and its Applications 384(2), 549–566 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kalogeiton, V.S., Papadopoulos, D.P., Georgilas, I.P., Sirakoulis, G.C., Adamatzky, A.I. (2015). Biomimicry of Crowd Evacuation with a Slime Mould Cellular Automaton Model. In: Pancerz, K., Zaitseva, E. (eds) Computational Intelligence, Medicine and Biology. Studies in Computational Intelligence, vol 600. Springer, Cham. https://doi.org/10.1007/978-3-319-16844-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16844-9_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16843-2

  • Online ISBN: 978-3-319-16844-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics