Abstract
Evacuation is an imminent movement of people away from sources of danger. Evacuation in highly structured environments, e.g. building, requires advance planning and large-scale control. Finding a shortest path towards exit is a key for the prompt successful evacuation. Slime mould Physarum polycephalum is proven to be an efficient path solver: the living slime mould calculates optimal paths towards sources of attractants yet maximizes distances from repellents. The search strategy implemented by the slime mould is straightforward yet efficient. The slime mould develops may active traveling zones, or pseudopodia, which propagates along different, alternative, routes the pseudopodia close to the target loci became dominating and the pseudopodia propagating along less optimal routes decease. We adopt the slime mould’s strategy in a Cellular-Automaton (CA) model of a crowd evacuation. CA are massive-parallel computation tool capable for mimicking the Physarum’s behaviour. The model accounts for Physarum foraging process, the food diffusion, the organism’s growth, the creation of tubes for each organism, the selection of optimum path for each human and imitation movement of all humans at each time step towards near exit. To test the efficiency and robustness of the proposed CA model, several simulation scenarios were proposed proving that the model succeeds to reproduce sufficiently the Physarum’s inspiring behaviour.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamatzky, A.: Physarum machine: Implementation of a kolmogorov-uspensky machine on a biological substrate. Parallel Processing Letters 17(4), 455–467 (2007)
Adamatzky, A.: Physarum machines: computers from slime mould, vol. 74. World Scientific, Singapore (2010)
Adamatzky, A.: Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Transactions on NanoBioscience 11(2), 131–134 (2012)
Adamatzky, A.: Route 20, autobahn 7 and physarum polycephalum: Approximating longest roads in usa and germany with slime mould on 3d terrains. arXiv preprint arXiv:1211.0519. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics (2013) (in press)
Adamatzky, A., Jones, J.: Road planning with slime mould: if physarum built motorways it would route m6/m74 through newcastle. I. J. Bifurcation and Chaos 20(10), 3065–3084 (2010)
Adamatzky, A., Schumann, A.: Physarum spatial logic. New Mathematics and Natural Computation 07(03), 483–498 (2011)
Aubé, F., Shield, R.: Modeling the effect of leadership on crowd flow dynamics. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 601–611. Springer, Heidelberg (2004)
Bandini, S., Manzoni, S., Vizzari, G.: Situated cellular agents: A model to simulate crowding dynamics. IEICE Transactions on Information and Systems 87(3), 669–676 (2004)
Braun, A., Musse, S.R., de Oliveira, L.P.L., Bodmann, B.E.: Modeling individual behaviors in crowd simulation. In: 16th International Conference on Computer Animation and Social Agents, pp. 143–148. IEEE (2003)
Brogan, D.C., Hodgins, J.K.: Simulation level of detail for multiagent control. In: Proceedings of the first international joint conference on Autonomous agents and multiagent systems: part 1, pp. 199–206. ACM (2002)
Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295(3), 507–525 (2001)
Chenney, S.: Flow tiles. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 233–242. Eurographics Association (2004)
Chopard, B., Droz, M.: Cellular automata modeling of physical systems, vol. 122. Springer (1998)
Daoliang, Z., Lizhong, Y., Jian, L.: Exit dynamics of occupant evacuation in an emergency. Physica A: Statistical Mechanics and its Applications 363(2), 501–511 (2006)
Feynman, R.P.: Simulating physics with computers. International Journal of Theoretical Physics 21(6), 467–488 (1982)
Georgoudas, I., Sirakoulis, G.C., Scordilis, E., Andreadis, I.: A cellular automaton simulation tool for modelling seismicity in the region of xanthi. Environmental Modelling & Software 22(10), 1455–1464 (2007)
Georgoudas, I.G., Kyriakos, P., Sirakoulis, G.C., Andreadis, I.T.: An fpga implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields. Microprocessors and Microsystems 34(7), 285–300 (2010)
Georgoudas, I.G., Sirakoulis, G.C., Andreadis, I.T.: A simulation tool for modelling pedestrian dynamics during evacuation of large areas. In: Maglogiannis, I., Karpouzis, K., Bramer, M. (eds.) Artificial Intelligence Applications and Innovations. IFIP, vol. 204, pp. 618–626. Springer, Heidelberg (2006)
Gunji, Y.P., Shirakawa, T., Niizato, T., Haruna, T.: Minimal model of a cell connecting amoebic motion and adaptive transport networks. Journal of Theoretical Biology 253(4), 659–667 (2008)
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)
Henderson, L.: The statistics of crowd fluids. Nature 229, 381–383 (1971)
Henein, C.M., White, T.: Agent-based modelling of forces in crowds. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415, pp. 173–184. Springer, Heidelberg (2005)
Hoogendoorn, S.P.: Pedestrian travel behavior modeling. In: 10th International Conference on Travel Behavior Research, Lucerne (2003)
Jendrsczok, J., Ediger, P., Hoffmann, R.: A scalable configurable architecture for the massively parallel gca model. International Journal of Parallel, Emergent and Distributed Systems 24(4), 275–291 (2009)
Jian, L., Lizhong, Y., Daoliang, Z.: Simulation of bi-direction pedestrian movement in corridor. Physica A: Statistical Mechanics and its Applications 354, 619–628 (2005)
Jones, J.: Approximating the behaviours of physarum polycephalum for the construction and minimisation of synthetic transport networks. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 191–208. Springer, Heidelberg (2009)
Kalogeiton, V.S., Papadopoulos, D.P., Sirakoulis, G.C.: Hey physarum! can you perform slam? IJUC 10(4), 271–293 (2014)
Karafyllidis, I.: A model for the prediction of oil slick movement and spreading using cellular automata. Environment International 23(6), 839 – 850 (1997). doi: http://dx.doi.org/10.1016/S0160-41209700096-2
Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecological Modelling 99(1), 87–97 (1997)
Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecological Modelling 99(1), 87–97 (1997), doi: http://dx.doi.org/10.1016/S0304-38009601942-4
Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Physical Review E 67(5) 056, 122 (2003)
Lindzey, G.E., Aronson, E.E. (eds.): The handbook of social psychology. Addison-Wesley (1968)
Liu, Y., Zhang, Z., Gao, C., Wu, Y., Qian, T.: A physarum network evolution model based on IBTM. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013, Part II. LNCS, vol. 7929, pp. 19–26. Springer, Heidelberg (2013)
Mardiris, V., Sirakoulis, G.C., Mizas, C., Karafyllidis, I., Thanailakis, A.: A cad system for modeling and simulation of computer networks using cellular automata. IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews 38(2), 253–264 (2008)
Milazzo, J.S., Rouphail, N.M., Hummer, J.E., Allen, D.P.: Effect of pedestrians on capacity of signalized intersections. Transportation Research Record: Journal of the Transportation Research Board 1646(1), 37–46 (1998)
Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7(2), 152–164 (2001)
Nakagaki, T., Yamada, H., Tóth, A.: Intelligence: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)
Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an amoeboid organism. Biophysical Chemistry 92(1), 47–52 (2001)
Nakagaki, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction pattern in the i physarum plasmodium. Biophysical Chemistry 84(3), 195–204 (2000)
Nishinari, K., Sugawara, K., Kazama, T., Schadschneider, A., Chowdhury, D.: Modelling of self-driven particles: Foraging ants and pedestrians. Physica A: Statistical Mechanics and its Applications 372(1), 132–141 (2006)
Paris, S., Donikian, S.: Activity-driven populace: a cognitive approach to crowd simulation. IEEE Computer Graphics and Applications 29(4), 34–43 (2009)
Perez, G.J., Tapang, G., Lim, M., Saloma, C.: Streaming, disruptive interference and power-law behavior in the exit dynamics of confined pedestrians. Physica A: Statistical Mechanics and its Applications 312(3), 609–618 (2002)
Schultz, M., Lehmann, S., Fricke, H.: A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals. In: Pedestrian and Evacuation Dynamics 2005, pp. 369–375. Springer (2007)
Schumann, A., Adamatzky, A.: Toward semantical model of reaction-diffusion computing. Kybernetes 38(9), 1518–1531 (2009)
Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5), 246–274 (2007)
Shirakawa, T., Adamatzky, A., Gunji, Y.P., Miyake, Y.: On simultaneous construction of voronoi diagram and delaunay triangulation by physarum polycephalum. International Journal of Bifurcation and Chaos 19(09), 3109–3117 (2009)
Shirakawa, T., Adamatzky, A., Gunji, Y.P., Miyake, Y.: On simultaneous construction of voronoi diagram and delaunay triangulation by physarum polycephalum. I. J. Bifurcation and Chaos 19(9), 3109–3117 (2009)
Sirakoulis, G.C.: A tcad system for vlsi implementation of the cvd process using vhdl. Integration, the VLSI Journal 37(1), 63–81 (2004)
Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2012. LNCS, vol. 7495. Springer, Heidelberg (2012)
Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling 133(3), 209–223 (2000)
Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cad system for the construction and vlsi implementation of cellular automata algorithms using vhdl. Microprocessors and Microsystems 27(8), 381–396 (2003)
Spezzano, G., Talia, D., Di Gregorio, S., Rongo, R., Spataro, W.: A parallel cellular tool for interactive modeling and simulation. IEEE Computational Science & Engineering 3(3), 33–43 (1996)
Stephenson, S.L., Stempen, H., Hall, I.: Myxomycetes: a handbook of slime molds. Timber press Portland, Oregon (1994)
Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. Journal of Theoretical Biology 244(4), 553 (2007)
Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)
Toffoli, T.: Cam: A high-performance cellular-automaton machine. Physica D: Nonlinear Phenomena 10(1), 195–204 (1984)
Tsompanas, M.A.I., Sirakoulis, G.C.: Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspiration & Biomimetics 7(3), 036,013 (2012)
Tsuda, S., Aono, M., Gunji, Y.P.: Robust and emergent physarum logical-computing. Biosystems 73(1), 45–55 (2004)
Varas, A., Cornejo, M., Mainemer, D., Toledo, B., Rogan, J., Munoz, V., Valdivia, J.: Cellular automaton model for evacuation process with obstacles. Physica A: Statistical Mechanics and its Applications 382(2), 631–642 (2007)
Vichniac, G.Y.: Simulating physics with cellular automata. Physica D: Nonlinear Phenomena 10(1), 96–116 (1984)
Vizzari, G., Manenti, L., Crociani, L.: Adaptive pedestrian behaviour for the preservation of group cohesion. Complex Adaptive Systems Modeling 1(1), 1–29 (2013)
Von Neumann, J., Burks, A.W., et al.: Theory of self-reproducing automata. University of Illinois press Urbana (1966)
Weifeng, F., Lizhong, Y., Weicheng, F.: Simulation of bi-direction pedestrian movement using a cellular automata model. Physica A: Statistical Mechanics and its Applications 321(3), 633–640 (2003)
Wilding, N.B., Trew, A., Hawick, K., Pawley, G.: Scientific modeling with massively parallel simd computers. Proceedings of the IEEE 79(4), 574–585 (1991)
Wolfram, S.: Theory and applications of cellular automata. Advanced Series on Complex Systems. World Scientific Publication, Singapore (1986)
Yang, L., Zhao, D., Li, J., Fang, T.: Simulation of the kin behavior in building occupant evacuation based on cellular automaton. Building and Environment 40(3), 411–415 (2005)
Yu, Y., Song, W.: Cellular automaton simulation of pedestrian counter flow considering the surrounding environment. Physical Review E 75(4), 046,112 (2007)
Yuan, W., Tan, K.H.: An evacuation model using cellular automata. Physica A: Statistical Mechanics and its Applications 384(2), 549–566 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kalogeiton, V.S., Papadopoulos, D.P., Georgilas, I.P., Sirakoulis, G.C., Adamatzky, A.I. (2015). Biomimicry of Crowd Evacuation with a Slime Mould Cellular Automaton Model. In: Pancerz, K., Zaitseva, E. (eds) Computational Intelligence, Medicine and Biology. Studies in Computational Intelligence, vol 600. Springer, Cham. https://doi.org/10.1007/978-3-319-16844-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-16844-9_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16843-2
Online ISBN: 978-3-319-16844-9
eBook Packages: EngineeringEngineering (R0)