Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multiple Object Tracking by Efficient Graph Partitioning

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Included in the following conference series:

Abstract

In this paper, we view multiple object tracking as a graph partitioning problem. Given any object detector, we build the graph of all detections and aim to partition it into trajectories. To quantify the similarity of any two detections, we consider local cues such as point tracks and speed, global cues such as appearance, as well as intermediate ones such as trajectory straightness. These different clues are dealt jointly to make the approach robust to detection mistakes (missing or extra detections). We thus define a Conditional Random Field and optimize it using an efficient combination of message passing and move-making algorithms. Our approach is fast on video batch sizes of hundreds of frames. Competitive and stable results on varied videos demonstrate the robustness and efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the code provided by [2] to compute these metrics.

  2. 2.

    Detections from http://iris.usc.edu/people/yangbo/downloads.html.

  3. 3.

    MOTA code from https://github.com/glisanti/CLEAR-MOT.

  4. 4.

    http://www-sop.inria.fr/stars/Documents/tracking/.

References

  1. Breitenstein, M., Reichlin, F.: Robust tracking-by-detection using a detector confidence particle filter. In: ICCV (2009)

    Google Scholar 

  2. Andriyenko, A., Schindler, K., Roth, S.: Discrete-continuous optimization for multi-target tracking. In: CVPR (2012)

    Google Scholar 

  3. Milan, A., Schindler, K., Roth, S.: Detection-and trajectory-level exclusion in multiple object tracking. In: CVPR, June 2013

    Google Scholar 

  4. Roshan Zamir, A., Dehghan, A., Shah, M.: GMCP-tracker: global multi-object tracking using generalized minimum clique graphs. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 343–356. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximum weight independent set. In: CVPR (2011)

    Google Scholar 

  6. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)

    Google Scholar 

  7. Shitrit, H.B., Berclaz, J., et al.: Tracking multiple people under global appearance constraints. In: ICCV (2011)

    Google Scholar 

  8. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using K-shortest paths optimization. TPAMI 33, 1806–1819 (2011)

    Article  Google Scholar 

  9. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR (2011)

    Google Scholar 

  10. Russell, C., Agapito, L., Setti, F.: Efficient second order multi-target tracking with exclusion constraints. In: BMVC (2011)

    Google Scholar 

  11. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: CVPR (2011)

    Google Scholar 

  12. Collins, R.T.: Multitarget data association with higher-order motion models. In: CVPR (2012)

    Google Scholar 

  13. Butt, A., Collins, R.: Multi-target tracking by Lagrangian relaxation to min-cost network flow. In: CVPR (2013)

    Google Scholar 

  14. Ellis, A., Shahrokni, A., Ferryman, J.: PETS2009 and Winter-PETS 2009 results: A combined evaluation. In: PETS Workshop. IEEE (2009)

    Google Scholar 

  15. Kappes, J.H., Speth, M., Reinelt, G., Schnorr, C.: Towards efficient and exact MAP-inference for large scale discrete computer vision problems via combinatorial optimization. In: CVPR (2013)

    Google Scholar 

  16. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. TPAMI 28(10), 1568–1583 (2006)

    Article  Google Scholar 

  17. Besag, J.: On the statistical analysis of dirty pictures. Stat. Mehodological Soc. 48(3), 259–302 (1986)

    MATH  MathSciNet  Google Scholar 

  18. Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: The lazy flipper: efficient depth-limited exhaustive search in discrete graphical models. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 154–166. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Martins, A.F.T., Figueiredo, M.A.T., Aguiar, P.M.Q., Smith, N.A., Xing, E.P.: An augmented Lagrangian approach to constrained MAP inference. In: ICML (2011)

    Google Scholar 

  20. Sontag, D., Choe, D., Li, Y.: Efficiently searching for frustrated cycles in MAP inference. In: Uncertainty in Artificial Intelligence (2012)

    Google Scholar 

  21. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Milan, A., Schindler, K., Roth, S.: Challenges of Ground Truth Evaluation of Multi-Target Tracking. In: CVPR Workshops (2013)

    Google Scholar 

  23. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP JIVP 2008, 1:1–1:10 (2008). doi:10.1155/2008/246309

    Google Scholar 

  24. Zhang, J., Presti, L., Sclaroff, S.: Online multi-person tracking by tracker hierarchy. In: AVSS (2012)

    Google Scholar 

  25. Senst, T., Eiselein, V., Sikora, T.: Robust local optical flow for feature tracking. IEEE Trans. Circuits Syst. Video Technol. 22(9), 1377–1387 (2012)

    Article  Google Scholar 

  26. Zach, C., Gallup, D., Frahm, J.: Fast gain-adaptive KLT tracking on the GPU. In: CVPR Workshops (2008)

    Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Community’s FP7/2007-2013 - under grant agreement no 248907-VANAHEIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kumar, R., Charpiat, G., Thonnat, M. (2015). Multiple Object Tracking by Efficient Graph Partitioning. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics