Abstract
An image is composed by several intrinsic images including the reflectance and the shading. In this paper, we propose a novel approach to infer the shading image from shading orders between pairs of pixels. The pairwise shading orders are measured by two types of methods: the brightness order and the low-order fittings of local shading field. The brightness order is a non-local measure, which does not rely on local gradients, and can be applied to any pair of pixels. In contrast, the low-order fittings are effective for pixel pairs within local regions of smooth shading. These methods are complementary, and they together can capture both the local smoothness and non-local order structure of shading. Further, we evaluate the reliability of these methods by their robustness to perturbations, including the errors in reflectance clustering, the variations of reflectance and shading, and the spatial distances. We adopt a strategy of local competition and global Angular Embedding to integrate pairwise orders into a globally consistent order, taking their reliability into account. Experiments on the MIT Intrinsic Image dataset and the UIUC Shadow dataset show that our model can effectively recover the shading image including those deeply shadowed areas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barrow, H.G., Tenenbaum, J.M.: Recovering Intrinsic Scene Characteristics from Images. In: Hanson, A.R., Riseman, E.M. (eds.) Computer Vision Systems, vol. 27, pp. 3–26. Academic Press, New York (1978)
Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)
Shen, L., Ping, T., Lin, S.: Intrinsic image decomposition with non-local texture cues. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2008)
Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.: Recovering intrinsic images with a global sparsity prior on reflectance. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F.C.N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 765–773. MIT press, Massachusetts (2011)
Lee, K.J., Zhao, Q., Tong, X., Gong, M., Izadi, S., Lee, S.U., Tan, P., Lin, S.: Estimation of intrinsic image sequences from image+depth video. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 327–340. Springer, Heidelberg (2012)
Chen, Q., Koltun, V.: A simple model for intrinsic image decomposition with depth cues. In: IEEE International Conference on Computer Vision (2013)
Shen, L., Yeo, C.: Intrinsic images decomposition using a local and global sparse representation of reflectance. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 697–704 (2011)
Barron, T.T., Malik, J.: Color constancy, intrinsic images, and shape estimation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012. LNCS, vol. 7575, pp. 57–70. Springer, Berlin (2012)
Garces, E., Munoz, A., Lopez-Moreno, J., Gutierrez, D.: Intrinsic images by clustering. Comput. Graph. Forum 31, 1415–1424 (2012)
Huang, X., Hua, G., Tumblin, J., Williams, L.: What characterizes a shadow boundary under the sun and sky? In: IEEE International Conference on Computer Vision, pp. 898–905 (2011)
Mark, B.F., Drew, M.S.: Recovering shading from color images. In: Sandini, Giulio (ed.) ECCV 1992. LNCS, vol. 588. Springer, Heidelberg (1992)
Gevers, T.: Reflectance-based classification of color edges. In: IEEE International Conference on Computer Vision, p. 856 (2003)
Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 823–836. Springer, Heidelberg (2002)
Van de Weijer, J., Gevers, T., Geusebroek, J.M.: Edge and corner detection by photometric quasi-invariants. IEEE Trans. Pattern Anal. Mach. Intell. 27, 625–630 (2005)
Tappen, M.F., Freeman, W.T., Adelson, E.H.: Recovering intrinsic images from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1459–1472 (2005)
Tappen, M.F., Adelson, E.H., Freeman, W.T.: Estimating intrinsic component images using non-linear regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1992–1999 (2006)
Serra, M., Penacchio, O., Benavente, R., Vanrell, M.: Names and shades of color for intrinsic image estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 278–285 (2012)
Li, Y., Brown, M.S.: Single image layer separation using relative smoothness. In: The IEEE Conference on Computer Vision and Pattern Recognition (2014)
Chang, J., Cabezas, R., Fisher III, J.W.: Bayesian nonparametric intrinsic image decomposition. In: Proceedings of the European Conference on Computer Vision (2014)
Maxwell, B.A., Friedhoff, R.M., Smith, C.A.: A bi-illuminant dichromatic reflection model for understanding images. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)
Yu, S.X.: Angular embedding: A robust quadratic criterion. IEEE Trans. Pattern Anal. Mach. Intell. 34, 158–173 (2012)
Finlayson, G., Drew, M., Lu, C.: Entropy minimization for shadow removal. Int. J. Comput. Vis. 85, 35–57 (2009)
Barron, J.T., Malik, J.: Shape, albedo, and illumination from a single image of an unknown object. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 334–341 (2012)
Omer, I., Werman, M.: Color lines: image specific color representation. IEEE Conference on Computer Vision Pattern Recognition. vol. 2, pp. 946–953 (2004)
Shi, J., Malik, J.: Normalized cuts and image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (1997)
Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground-truth dataset and baseline evaluations for intrinsic image algorithms. In: IEEE International Conference on Computer Vision, pp. 2335–2342 (2009)
Guo, R., Dai, Q., Hoiem, D.: Single-image shadow detection and removal using paired regions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2033–2040 (2011)
Jiang, X., Schofield, A.J., Wyatt, J.L.: Correlation-based intrinsic image extraction from a single image. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 58–71. Springer, Berlin Heidelberg (2010)
Weiss, Y.: Deriving intrinsic images from image sequences. In: IEEE International Conference on Computer Vision, pp. 68–75 (2001)
Acknowledgement
This work was supported in part by the National Basic Research Program of China under Grant No. 2012CB316400, and the National Natural Science Foundation of China under Grant No. 91120006.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Liu, Y., Yuan, Z., Zheng, N. (2015). Intrinsic Image Decomposition from Pair-Wise Shading Ordering. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-16814-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16813-5
Online ISBN: 978-3-319-16814-2
eBook Packages: Computer ScienceComputer Science (R0)