Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intrinsic Image Decomposition from Pair-Wise Shading Ordering

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Included in the following conference series:

Abstract

An image is composed by several intrinsic images including the reflectance and the shading. In this paper, we propose a novel approach to infer the shading image from shading orders between pairs of pixels. The pairwise shading orders are measured by two types of methods: the brightness order and the low-order fittings of local shading field. The brightness order is a non-local measure, which does not rely on local gradients, and can be applied to any pair of pixels. In contrast, the low-order fittings are effective for pixel pairs within local regions of smooth shading. These methods are complementary, and they together can capture both the local smoothness and non-local order structure of shading. Further, we evaluate the reliability of these methods by their robustness to perturbations, including the errors in reflectance clustering, the variations of reflectance and shading, and the spatial distances. We adopt a strategy of local competition and global Angular Embedding to integrate pairwise orders into a globally consistent order, taking their reliability into account. Experiments on the MIT Intrinsic Image dataset and the UIUC Shadow dataset show that our model can effectively recover the shading image including those deeply shadowed areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrow, H.G., Tenenbaum, J.M.: Recovering Intrinsic Scene Characteristics from Images. In: Hanson, A.R., Riseman, E.M. (eds.) Computer Vision Systems, vol. 27, pp. 3–26. Academic Press, New York (1978)

    Google Scholar 

  2. Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)

    Article  Google Scholar 

  3. Shen, L., Ping, T., Lin, S.: Intrinsic image decomposition with non-local texture cues. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2008)

    Google Scholar 

  4. Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.: Recovering intrinsic images with a global sparsity prior on reflectance. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F.C.N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 765–773. MIT press, Massachusetts (2011)

    Google Scholar 

  5. Lee, K.J., Zhao, Q., Tong, X., Gong, M., Izadi, S., Lee, S.U., Tan, P., Lin, S.: Estimation of intrinsic image sequences from image+depth video. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 327–340. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Chen, Q., Koltun, V.: A simple model for intrinsic image decomposition with depth cues. In: IEEE International Conference on Computer Vision (2013)

    Google Scholar 

  7. Shen, L., Yeo, C.: Intrinsic images decomposition using a local and global sparse representation of reflectance. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 697–704 (2011)

    Google Scholar 

  8. Barron, T.T., Malik, J.: Color constancy, intrinsic images, and shape estimation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012. LNCS, vol. 7575, pp. 57–70. Springer, Berlin (2012)

    Chapter  Google Scholar 

  9. Garces, E., Munoz, A., Lopez-Moreno, J., Gutierrez, D.: Intrinsic images by clustering. Comput. Graph. Forum 31, 1415–1424 (2012)

    Article  Google Scholar 

  10. Huang, X., Hua, G., Tumblin, J., Williams, L.: What characterizes a shadow boundary under the sun and sky? In: IEEE International Conference on Computer Vision, pp. 898–905 (2011)

    Google Scholar 

  11. Mark, B.F., Drew, M.S.: Recovering shading from color images. In: Sandini, Giulio (ed.) ECCV 1992. LNCS, vol. 588. Springer, Heidelberg (1992)

    Google Scholar 

  12. Gevers, T.: Reflectance-based classification of color edges. In: IEEE International Conference on Computer Vision, p. 856 (2003)

    Google Scholar 

  13. Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 823–836. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Van de Weijer, J., Gevers, T., Geusebroek, J.M.: Edge and corner detection by photometric quasi-invariants. IEEE Trans. Pattern Anal. Mach. Intell. 27, 625–630 (2005)

    Article  Google Scholar 

  15. Tappen, M.F., Freeman, W.T., Adelson, E.H.: Recovering intrinsic images from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1459–1472 (2005)

    Article  Google Scholar 

  16. Tappen, M.F., Adelson, E.H., Freeman, W.T.: Estimating intrinsic component images using non-linear regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1992–1999 (2006)

    Google Scholar 

  17. Serra, M., Penacchio, O., Benavente, R., Vanrell, M.: Names and shades of color for intrinsic image estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 278–285 (2012)

    Google Scholar 

  18. Li, Y., Brown, M.S.: Single image layer separation using relative smoothness. In: The IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  19. Chang, J., Cabezas, R., Fisher III, J.W.: Bayesian nonparametric intrinsic image decomposition. In: Proceedings of the European Conference on Computer Vision (2014)

    Google Scholar 

  20. Maxwell, B.A., Friedhoff, R.M., Smith, C.A.: A bi-illuminant dichromatic reflection model for understanding images. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  21. Yu, S.X.: Angular embedding: A robust quadratic criterion. IEEE Trans. Pattern Anal. Mach. Intell. 34, 158–173 (2012)

    Article  Google Scholar 

  22. Finlayson, G., Drew, M., Lu, C.: Entropy minimization for shadow removal. Int. J. Comput. Vis. 85, 35–57 (2009)

    Article  Google Scholar 

  23. Barron, J.T., Malik, J.: Shape, albedo, and illumination from a single image of an unknown object. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 334–341 (2012)

    Google Scholar 

  24. Omer, I., Werman, M.: Color lines: image specific color representation. IEEE Conference on Computer Vision Pattern Recognition. vol. 2, pp. 946–953 (2004)

    Google Scholar 

  25. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (1997)

    Google Scholar 

  26. Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground-truth dataset and baseline evaluations for intrinsic image algorithms. In: IEEE International Conference on Computer Vision, pp. 2335–2342 (2009)

    Google Scholar 

  27. Guo, R., Dai, Q., Hoiem, D.: Single-image shadow detection and removal using paired regions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2033–2040 (2011)

    Google Scholar 

  28. Jiang, X., Schofield, A.J., Wyatt, J.L.: Correlation-based intrinsic image extraction from a single image. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 58–71. Springer, Berlin Heidelberg (2010)

    Chapter  Google Scholar 

  29. Weiss, Y.: Deriving intrinsic images from image sequences. In: IEEE International Conference on Computer Vision, pp. 68–75 (2001)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Basic Research Program of China under Grant No. 2012CB316400, and the National Natural Science Foundation of China under Grant No. 91120006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanliu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, Y., Yuan, Z., Zheng, N. (2015). Intrinsic Image Decomposition from Pair-Wise Shading Ordering. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics