Nothing Special   »   [go: up one dir, main page]

Skip to main content

Kangaroos in Side-Channel Attacks

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8968))

Abstract

Side-channel attacks are a powerful tool to discover the cryptographic secrets of a chip or other device but only too often do they require too many traces or leave too many possible keys to explore. In this paper we show that for side channel attacks on discrete-logarithm-based systems significantly more unknown bits can be handled by using Pollard’s kangaroo method: if \(b\) bits are unknown then the attack runs in \(2^{b/2}\) instead of \(2^b\). If an attacker has many targets in the same group and thus has reasons to invest in precomputation, the costs can even be brought down to \(2^{b/3}\).

Usually the separation between known and unknown keybits is not this clear cut – they are known with probabilities ranging between 100 % and 0 %. Enumeration and rank estimation of cryptographic keys based on partial information derived from cryptanalysis have become important tools for security evaluations. They make the line between a broken and secure device more clear and thus help security evaluators determine how high the security of a device is. For symmetric-key cryptography there has been some recent work on key enumeration and rank estimation, but for discrete-logarithm-based systems these algorithms fail because the subkeys are not independent and the algorithms cannot take advantage of the above-mentioned faster attacks. We present \(\epsilon \)-enumeration as a new method to compute the rank of a key by using the probabilities together with (variations of) Pollard’s kangaroo algorithm and give experimental evidence.

This work was supported by the Netherlands Organisation for Scientific Research (NWO) under grant 639.073.005. Permanent ID of this document: c1c4c98f98c7ca3cb1b1f4208b95e8b8. Date: February 15, 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernstein, D.J., Lange, T.: Computing small discrete logarithms faster. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 317–338. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bernstein, D.J., Lange, T., Schwabe, P.: On the correct use of the negation map in the Pollard rho method. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 128–146. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Computing discrete logarithms in an interval. Math. Comput. 82(282), 1181–1195 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Galbraith, S., Ruprai, R.S.: An improvement to the Gaudry-Schost algorithm for multidimensional discrete logarithm problems. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 368–382. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Gaudry, P., Schost, É.: A low-memory parallel version of Matsuo, Chao, and Tsujii’s algorithm. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving discrete logarithms from partial knowledge of the key. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) Indocrypt 2007. LNCS, vol. 4859, pp. 224–237. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer-Verlag New York Inc., Secaucus (2003)

    Google Scholar 

  10. Pan, J., van Woudenberg, J.G.J., den Hartog, J.I., Witteman, M.F.: Improving DPA by peak distribution analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 241–261. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Comput. 32, 918–924 (1978)

    MATH  MathSciNet  Google Scholar 

  12. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4), 437–447 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shanks, D.: Class number, a theory of factorization, and genera. In: Lewis, D.J. (ed.) 1969 Number Theory Institute. Proceedings of Symposia in Pure Mathematics, Providence, Rhode Island, vol. 20, pp. 415–440. American Mathematical Society (1971)

    Google Scholar 

  14. Stein, A., Teske, E.: The parallelized Pollard kangaroo method in real quadratic function fields. Math. Comput. 71(238), 793–814 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Straus, E.G.: Addition chains of vectors (problem 5125). Am. Math. Mon. 70, 806–808 (1964). http://cr.yp.to/bib/entries.html#1964/straus

    MathSciNet  Google Scholar 

  16. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12(1), 1–28 (1999)

    Article  MATH  Google Scholar 

  17. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key enumeration algorithm and its application to side-channel attacks. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine van Vredendaal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lange, T., van Vredendaal, C., Wakker, M. (2015). Kangaroos in Side-Channel Attacks. In: Joye, M., Moradi, A. (eds) Smart Card Research and Advanced Applications. CARDIS 2014. Lecture Notes in Computer Science(), vol 8968. Springer, Cham. https://doi.org/10.1007/978-3-319-16763-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16763-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16762-6

  • Online ISBN: 978-3-319-16763-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics