Nothing Special   »   [go: up one dir, main page]

Skip to main content

Human Action Recognition Using Action Bank Features and Convolutional Neural Networks

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9008))

Included in the following conference series:

  • 1978 Accesses

Abstract

With the advancement in technology and availability of multimedia content, human action recognition has become a major area of research in computer vision that contributes to semantic analysis of videos. The representation and matching of spatio-temporal information in videos is a major factor affecting the design and performance of existing convolution neural network approaches for human action recognition. In this paper, in contrast to the traditional approach of using raw video as input, we derive attributes from action bank features to represent and match spatio-temporal information effectively. The derived features are arranged in a square matrix and used as input to the convolutional neural network for action recognition. The effectiveness of the proposed approach is demonstrated on KTH and UCF Sports datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Sequential deep learning for human action recognition. In: Salah, A.A., Lepri, B. (eds.) HBU 2011. LNCS, vol. 7065, pp. 29–39. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35, 221–231 (2013)

    Article  Google Scholar 

  3. Huang, Y., Yang, H., Huang, P.: Action recognition using hog feature in different resolution video sequences. In: 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), pp. 85–88 (2012)

    Google Scholar 

  4. Sadanand, S., Corso, J.J.: Action bank: a high-level representation of activity in video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1234–1241 (2012)

    Google Scholar 

  5. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103, 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  6. Jiang, Z., Lin, Z., Davis, L.: Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35, 2651–2664 (2013)

    Article  Google Scholar 

  7. Baumann, F.: Action recognition with HOG-OF features. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 243–248. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Yao, B., Nie, B., Liu, Z., Zhu, S.C.: Animated pose templates for modeling and detecting human actions. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 36, 436–452 (2014)

    Article  Google Scholar 

  9. Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of data. Master’s thesis, Technical University of Denmark, Asmussens Alle, Denmark (2012)

    Google Scholar 

  10. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3337–3344 (2011)

    Google Scholar 

  11. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos ‘in the wild’. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1996–2003 (2009)

    Google Scholar 

  12. Le, Q., Zou, W., Yeung, S., Ng, A.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3361–3368 (2011)

    Google Scholar 

  13. Zhang, Y., Liu, X., Chang, M.-C., Ge, W., Chen, T.: Spatio-temporal phrases for activity recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 707–721. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176 (2011)

    Google Scholar 

  15. Wu, X., Xu, D., Duan, L., Luo, J.: Action recognition using context and appearance distribution features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 489–496 (2011)

    Google Scholar 

  16. Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2046–2053 (2010)

    Google Scholar 

  17. O’Hara, S., Draper, B.: Scalable action recognition with a subspace forest. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1210–1217 (2012)

    Google Scholar 

  18. Rodriguez, M., Ahmed, J., Shah, M.: Action mach a spatio-temporal maximum average correlation height filter for action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  19. Yeffet, L., Wolf, L.: Local trinary patterns for human action recognition. In: IEEE 12th International Conference on Computer Vision, pp. 492–497 (2009)

    Google Scholar 

  20. Sadanand, S., Corso, J.: Action bank: a high-level representation of activity in video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1234–1241 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earnest Paul Ijjina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ijjina, E.P., Mohan, C.K. (2015). Human Action Recognition Using Action Bank Features and Convolutional Neural Networks. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9008. Springer, Cham. https://doi.org/10.1007/978-3-319-16628-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16628-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16627-8

  • Online ISBN: 978-3-319-16628-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics