Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Topological Perspective on Cycling Robots for Full Tree Coverage

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

We study the topology of the space of coverings for a metric tree with disks embedded in the tree. Focusing on the coverings with excess one disk, we prove that its topological structure is that of a Cayley graph of the permutation group \(S_{n}\). What follows is a centralized algorithm for stabilizing periodic swarm coverings based upon feedback control with the designed vector field on a maximal subset of the space, removing discontinuity loci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We point out that coverage on a graph in our setting is completely different from  [4], where the coverage on a graph means exhaustive visits of all the vertices of the graph.

  2. 2.

    We use cycle \((\sigma _{1},\ldots ,\sigma _{n+1})\) to indicate the visiting order for each disk on every edge of \(\varGamma _{n}\). This notation is not to be confused with a permutation. It means \(\sigma _{i}\) is switched with \(\sigma _{i+1}\) and \(\sigma _{n+1}\) is switched with \(\sigma _{1}\).

References

  1. Anthony Armstrong, M.: Basic Topology. McGraw-Hill, London (1979)

    Google Scholar 

  2. Baryshnikov, Y.: On the spaces of coverings. Preprint (2014)

    Google Scholar 

  3. Baryshnikov, Y., Shapiro, B.: How to run a centipede: a topological perspective. Geometric Control Theory and sub-Riemannian Geometry. Springer INdAM Series, vol. 5, pp. 37–51 (2014)

    Google Scholar 

  4. Batalin, M.A., Sukhatme, G.: The design and analysis of an efficient local algorithm for coverage and exploration based on sensor network deployment. IEEE Trans. Robot. 23(4), 661–675 (2007)

    Article  Google Scholar 

  5. Björner, A.: Subspace arrangements. In: First European Congress of Mathematics, pp. 321–370. Springer, Berin (1994)

    Google Scholar 

  6. Cheng, W., Li, Z., Liu, K., Liu, Y., Li, X., Liao, X.: Sweep coverage with mobile sensors. In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–9 (2008)

    Google Scholar 

  7. Choset, H.: Coverage for robotics-a survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001)

    Article  Google Scholar 

  8. Cortés, J., Bullo, F.: Nonsmooth coordination and geometric optimization via distributed dynamical systems. SIAM Rev. 51(1), 163–189 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  10. Farbe, M.: Invitation to topological robotics. Eur. Math. Soc. (2008)

    Google Scholar 

  11. Friedman, J.: On Cayley graphs on the symmetric group generated by transpositions. Combinatorica 20(4), 505–519 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ghrist, R.W., Koditschek, D.E.: Safe cooperative robot dynamics on graphs. SIAM J. Control Optim. 40(5), 1556–1575 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guo, Y., Qu, Z.: Coverage control for a mobile robot patrolling a dynamic and uncertain environment. In: Fifth World Congress on Intelligent Control and Automation, WCICA 2004, vol. 6, pp. 4899–4903 (2004)

    Google Scholar 

  14. Hatcher, A.: Algebraic Topology. Cambridge UP, Cambridge (2002)

    MATH  Google Scholar 

  15. Hubenko, A., Fonoberov, V.A., Mathew, G., Mezic, I.: Multiscale adaptive search. IEEE Trans. Syst. Man, Cybern. Part B: Cybern. 41(4), 1076–1087 (2011)

    Article  Google Scholar 

  16. Liberzon, D.: Switching in Systems and Control. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  17. Mathew, G., Mezić, I.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Phys. D: Nonlinear Phenom. 240(4), 432–442 (2011)

    Article  MATH  Google Scholar 

  18. Michael LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  19. Schwager, M., Rus, D., Slotine, J.-J.: Decentralized, adaptive coverage control for networked robots. Int. J. Robot. Res. 28(3), 357–375 (2009)

    Article  Google Scholar 

  20. Song, D., Kim, C.-Y., Yi, J.: On the time to search for an intermittent signal source under a limited sensing range. IEEE Trans. Robot. 27(2), 313–323 (2011)

    Article  MATH  Google Scholar 

  21. Sontag, E.D.: Stability and stabilization: discontinuities and the effect of disturbances. Nonlinear Analysis, Differential Equations and Control, pp. 551–598. Springer, Berlin (1999)

    Google Scholar 

  22. Wang, H.: Covering with excess one: seeing the topology. arXiv:1312.7477 [math.GN] (2013)

  23. Zharnitsky, V., Baryshnikov, Y.: Search on the brink of chaos. Nonlinearity 25, 3023–3047 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhong, M., Cassandras, C.G.: Distributed coverage control and data collection with mobile sensor networks. IEEE Trans. Autom. Control 56(10), 2445–2455 (2011)

    Article  MathSciNet  Google Scholar 

  25. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Google Scholar 

Download references

Acknowledgments

The research is sponsored by ONR under the grant number N00014-11-1-0178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, H., Chen, C., Baryshnikov, Y. (2015). A Topological Perspective on Cycling Robots for Full Tree Coverage. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics