Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hierarchic Genetic Search with \(\alpha \)-Stable Mutation

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9028))

Included in the following conference series:

  • 1849 Accesses

Abstract

The paper analyzes the performance improvement imposed by the application of \(\alpha \)-stable probability distributions to the mutation operator of the Hierarchic Genetic Strategy (HGS), in solving ill-conditioned, multimodal global optimization problems in continuous domains. The performed experiments range from standard benchmarks (Rastrigin and multi-peak Gaussian) to an advanced inverse parametric problem of the logging measurement inversion, associated with the oil and gas resource investigation. The obtained results show that the application of \(\alpha \)-stable mutation can first of all decrease the total computational cost. The second advantage over the HGS with the standard, normal mutation consists in finding much more well-fitted individuals at the highest-accuracy HGS level located in attraction basins of local and global fitness minimizers. It might allow us to find more minimizers by performing local convex searches started from that points. It also delivers more information about the attraction basins of the minimizers, which can be helpful in their stability analysis.

The work presented in this paper has been partially supported by Polish National Science Center grants no. DEC-2011/03/B/ST6/01393.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tarantola, A.: Inverse Problem Theory. Society for Industrial and Applied Mathematics, Mathematics and its Applications. SIAM, Philadelphia (2005)

    Google Scholar 

  2. Garibaldi, L., Surace, C., Holford, K., Ostachowicz, W.M.: Damage Assessment of Structures. Trans Tech Publications, Zürich (1999)

    Google Scholar 

  3. Burczyński, T., Kuś, W., Długosz, A., Orantek, P.: Optimization and defect identification using distributed evolutionary algorithms. Eng. Appl. Artif. Intell. 17(4), 337–344 (2004)

    Article  Google Scholar 

  4. Barabasz, B., Gajda, E., Pardo, D., Paszyński, M., Schaefer, R., Szeliga, D.: \(hp\)-HGS twin adaptive strategy for inverse resistivity logging measurements. In: Borkowski, A., Lewiński, T., Dzierżanowski, G. (eds.) Proceedings of the 19th International Conference on Computational Methods in Mechanics CMM 2011, pp. 121–122. Warsaw University of Technology, Warsaw (2011)

    Google Scholar 

  5. Paruch, M., Majchrzak, E.: Identification of tumor region parameters using evolutionary algorithms and multiple reciprocity boundary element method. Eng. Appl. Artif. Intell. 20(5), 647–655 (2007)

    Article  Google Scholar 

  6. Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, Mathematics and its Applications. Springer, Heidelberg (1996)

    Book  Google Scholar 

  7. Barabasz, B., Migórski, S., Schaefer, R., Paszyński, M.: Multi-deme, twin adaptive strategy hp-HGS. Inverse Prob. Sci. Eng. 19(1), 3–16 (2011)

    Article  MATH  Google Scholar 

  8. Pardalos, P., Romeijn, H.: Handbook of Global Optimization (Nonconvex Optimization and its Applications). Kluwer, Dordrecht (1995)

    Google Scholar 

  9. Marti, R.: Multi-start methods. In: Glover, F., Kochenberger, G. (eds.) Handbook of MetaHeuristics, pp. 355–368. Kluwer, Dordrecht (2003)

    Google Scholar 

  10. Schaefer, R.: Genetic search reinforced by the population hierarchy in Foundations of Genetic Algorithms 7, pp. 383–399. Morgan Kaufman, San Francisco (2003)

    Google Scholar 

  11. Wierzba, B., Semczuk, A., Kołodziej, J., Schaefer, R.: Hierarchical Genetic Strategy with real number encoding. In: Proceedings of the 6th Conference on Evolutionary Algorithms and Global Optimization, pp. 231–237 (2003)

    Google Scholar 

  12. Paszyński, M., Barabasz, B., Schaefer, R.: Efficient adaptive strategy for solving inverse problems. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487, pp. 342–349. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Paszyński, M., Gajda-Zagórska, E., Schaefer, R., Pardo, D.: \(hp\)-hgs strategy for inverse ac/dc resistivity logging measurement simulations. Comput. Sci. 14(4), 629–644 (2013)

    Article  Google Scholar 

  14. Gajda-Zagórska, E., Schaefer, R., Smołka, M., Paszyński, M., Pardo, D.: A hybrid method for inversion of 3D DC logging measurements. Natural Computing. (2014). doi:10.1007/s11047-014-9440-y

  15. Barabasz, B., Gajda-Zagórska, E., Migórski, S., Paszyński, M., Schaefer, R., Smołka, M.: A hybrid algorithm for solving inverse problems in elasticity. Int. J. Appl. Math. Comput. Sci. 24(4), 865–886 (2014)

    Article  Google Scholar 

  16. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing with hp Finite Elements II. Frontiers: Three-Dimensional Elliptic and Maxwell Problems with Applications. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  17. Obuchowicz, A.: Multidimensional mutations in evolutionary algorithms based on real-valued representation. Int. J. Syst. Sci. 34(7), 469–483 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fang, K., Kotz, S., Ng, K.: Symmetric Multivariate and Related Distributions. Chapman and Hall, London (1990)

    Book  MATH  Google Scholar 

  19. Rudolph, G.: Local convergence rates of simple evolutionary algorithms with cauchy mutations. IEEE Trans. Evol. Comput. 1(4), 249–258 (1997)

    Article  MathSciNet  Google Scholar 

  20. Obuchowicz, A., Prȩtki, P.: Phenotypic evolution with mutation based on symmetric \(\alpha \)-stable distributions. Int. J. Appl. Math. Comput. Sci. 14(3), 289–316 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Schaefer, R., Barabasz, B.: Asymptotic behavior of hp–adaptive finite element method coupled with the hierarchic genetic strategy) by solving inverse problems. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS, vol. 5103, pp. 682–691. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes. Chapman and Hall, New York (1994)

    MATH  Google Scholar 

  23. Obuchowicz, A., Prȩtki, P.: Isotropic symmetric \(\alpha \)-stable mutations. In: IEEE Congress of Evolutionary Computation, pp. 404–410. IEEE Press (2005)

    Google Scholar 

  24. Obuchowicz, A.: Multidimensional mutations in evolutionary algorithms based on real-valued representation. Int. J. Syst. Serv. 34, 469–483 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Smołka, M., Schaefer, R.: A memetic framework for solving difficult inverse problems. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) Applications of Evolutionary Computation. LNCS, vol. 8602, pp. 137–148. Springer, Heidelberg (2014)

    Google Scholar 

  26. Smołka, M., Schaefer, R., Paszyński, M., Pardo, D., Álvarez-Aramberri, J.: Agent-oriented hierarchic strategy for solving inverse problems. Int. J. Appl. Math. Comput. Sci. (2015, accepted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Smołka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Obuchowicz, A.K., Smołka, M., Schaefer, R. (2015). Hierarchic Genetic Search with \(\alpha \)-Stable Mutation. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16549-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16548-6

  • Online ISBN: 978-3-319-16549-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics