Abstract
Leveraging historical data from the movie industry, this study built a predictive model for movie success, deviating from past studies by predicting profit (as opposed to revenue) at early stages of production (as opposed to just prior to release) to increase investor certainty. Our work derived several groups of novel features for each movie, based on the cast and collaboration network (who’), content (‘what’), and time of release (‘when’).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Apala, K.R., Jose, M., Motnam, S., Chan, C.-C., Liszka, K. J., de Gregorio, F.: Prediction of movies box office performance using social media. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013, pp. 1209–1214. ACM, New York (2013). doi:10.1145/2492517.2500232
Asur, S., Huberman, B.A.: Predicting the future with social media. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Washington, DC, USA, pp. 492–499 (2010). doi:10.1109/WI-IAT.2010.63
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003). doi:10.1162/jmlr.2003.3.4-5.993
Burt, R.: Structural holes: The social structure of competition. Harvard Univ Press (1995)
Diesner, J., Frantz, T., Carley, K.: Communication Networks from the Enron Email Corpus ‘It’s Always About the People. Enron is no Different’. Computational & Mathematical Organization Theory 11, 201–228 (2005). doi:10.1007/s10588-005-5377-0
Elberse, A.: The Power of Stars: Do Star Actors Drive the Success of Movies? Journal of Marketing 71(4), 102–120 (2007). doi:10.2307/30164000
Gopinath, S., Chintagunta, P.K., Venkataraman, S.: Blogs, Advertising, and Local-Market Movie Box Office Performance. Management Science (2013). doi:10.1287/mnsc.2013.1732
Meiseberg, B., Ehrmann, T.: Diversity in teams and the success of cultural products. Journal of Cultural Economics 37(1), 61–86 (2013). doi:10.1007/s10824-012-9173-7
Meiseberg, B., Ehrmann, T., Dormann, J.: We don’t need another hero–implications from network structure and resource commitment for movie performance. Schmalenbach Business Review (sbr) 60(1), 74–98 (2008)
Mestyán, M., Yasseri, T., Kertész, J.: Early prediction of movie box office success based on Wikipedia activity big data. PloS One 8(8), e71226 (2013)
Sharda, R., Delen, D.: Predicting box-office success of motion pictures with neural networks. Expert Systems with Applications 30(2), 243–254 (2006). doi:10.1016/j.eswa.2005.07.018
Simonoff, J.S., Sparrow, I.R.: Predicting Movie Grosses: Winners and Losers, Blockbusters and Sleepers. Chance 13(3), 15–24 (2000). doi:10.1080/09332480.2000.10542216
Zaheer, A., Soda, G.: Network Evolution: The Origins of Structural Holes. Administrative Science Quarterly 54(1), 1–31 (2009). doi:10.2189/asqu.2009.54.1.1
Zhang, W., Skiena, S.: Improving movie gross prediction through news analysis. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Washington, DC, USA, pp. 301–304 (2009). doi:10.1109/WI-IAT.2009.53
Zhao, K., Wang, X., Yu, M., Gao, B.: User recommendation in reciprocal and bipartite social networks–an online dating case study. IEEE Intelligent Systems 29(2), 27–35 (2013). doi:10.1109/MIS.2013.104
Zhao, K., Yen, J., Ngamassi, L.-M., Maitland, C., Tapia, A.: Simulating Inter-organizational Collaboration Network: a Multi-relational and Event-based Approach. Simulation 88, 617–631 (2012). doi:10.1177/0037549711421942
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lash, M., Fu, S., Wang, S., Zhao, K. (2015). Early Prediction of Movie Success — What, Who, and When. In: Agarwal, N., Xu, K., Osgood, N. (eds) Social Computing, Behavioral-Cultural Modeling, and Prediction. SBP 2015. Lecture Notes in Computer Science(), vol 9021. Springer, Cham. https://doi.org/10.1007/978-3-319-16268-3_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-16268-3_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16267-6
Online ISBN: 978-3-319-16268-3
eBook Packages: Computer ScienceComputer Science (R0)