Nothing Special   »   [go: up one dir, main page]

Skip to main content

Early Prediction of Movie Success — What, Who, and When

  • Conference paper
  • First Online:
Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9021))

Abstract

Leveraging historical data from the movie industry, this study built a predictive model for movie success, deviating from past studies by predicting profit (as opposed to revenue) at early stages of production (as opposed to just prior to release) to increase investor certainty. Our work derived several groups of novel features for each movie, based on the cast and collaboration network (who’), content (‘what’), and time of release (‘when’).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apala, K.R., Jose, M., Motnam, S., Chan, C.-C., Liszka, K. J., de Gregorio, F.: Prediction of movies box office performance using social media. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013, pp. 1209–1214. ACM, New York (2013). doi:10.1145/2492517.2500232

  2. Asur, S., Huberman, B.A.: Predicting the future with social media. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Washington, DC, USA, pp. 492–499 (2010). doi:10.1109/WI-IAT.2010.63

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003). doi:10.1162/jmlr.2003.3.4-5.993

    MATH  Google Scholar 

  4. Burt, R.: Structural holes: The social structure of competition. Harvard Univ Press (1995)

    Google Scholar 

  5. Diesner, J., Frantz, T., Carley, K.: Communication Networks from the Enron Email Corpus ‘It’s Always About the People. Enron is no Different’. Computational & Mathematical Organization Theory 11, 201–228 (2005). doi:10.1007/s10588-005-5377-0

    Article  MATH  Google Scholar 

  6. Elberse, A.: The Power of Stars: Do Star Actors Drive the Success of Movies? Journal of Marketing 71(4), 102–120 (2007). doi:10.2307/30164000

    Article  Google Scholar 

  7. Gopinath, S., Chintagunta, P.K., Venkataraman, S.: Blogs, Advertising, and Local-Market Movie Box Office Performance. Management Science (2013). doi:10.1287/mnsc.2013.1732

    Google Scholar 

  8. Meiseberg, B., Ehrmann, T.: Diversity in teams and the success of cultural products. Journal of Cultural Economics 37(1), 61–86 (2013). doi:10.1007/s10824-012-9173-7

    Article  Google Scholar 

  9. Meiseberg, B., Ehrmann, T., Dormann, J.: We don’t need another hero–implications from network structure and resource commitment for movie performance. Schmalenbach Business Review (sbr) 60(1), 74–98 (2008)

    Google Scholar 

  10. Mestyán, M., Yasseri, T., Kertész, J.: Early prediction of movie box office success based on Wikipedia activity big data. PloS One 8(8), e71226 (2013)

    Google Scholar 

  11. Sharda, R., Delen, D.: Predicting box-office success of motion pictures with neural networks. Expert Systems with Applications 30(2), 243–254 (2006). doi:10.1016/j.eswa.2005.07.018

    Article  Google Scholar 

  12. Simonoff, J.S., Sparrow, I.R.: Predicting Movie Grosses: Winners and Losers, Blockbusters and Sleepers. Chance 13(3), 15–24 (2000). doi:10.1080/09332480.2000.10542216

    MathSciNet  Google Scholar 

  13. Zaheer, A., Soda, G.: Network Evolution: The Origins of Structural Holes. Administrative Science Quarterly 54(1), 1–31 (2009). doi:10.2189/asqu.2009.54.1.1

    Article  Google Scholar 

  14. Zhang, W., Skiena, S.: Improving movie gross prediction through news analysis. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Washington, DC, USA, pp. 301–304 (2009). doi:10.1109/WI-IAT.2009.53

  15. Zhao, K., Wang, X., Yu, M., Gao, B.: User recommendation in reciprocal and bipartite social networks–an online dating case study. IEEE Intelligent Systems 29(2), 27–35 (2013). doi:10.1109/MIS.2013.104

    Article  Google Scholar 

  16. Zhao, K., Yen, J., Ngamassi, L.-M., Maitland, C., Tapia, A.: Simulating Inter-organizational Collaboration Network: a Multi-relational and Event-based Approach. Simulation 88, 617–631 (2012). doi:10.1177/0037549711421942

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Lash or Kang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lash, M., Fu, S., Wang, S., Zhao, K. (2015). Early Prediction of Movie Success — What, Who, and When. In: Agarwal, N., Xu, K., Osgood, N. (eds) Social Computing, Behavioral-Cultural Modeling, and Prediction. SBP 2015. Lecture Notes in Computer Science(), vol 9021. Springer, Cham. https://doi.org/10.1007/978-3-319-16268-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16268-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16267-6

  • Online ISBN: 978-3-319-16268-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics