Abstract
In this paper, we propose a novel effective framework to expand an existing image dataset automatically leveraging existing categories and crowdsourcing. Especially, in this paper, we focus on expansion on food image data set. The number of food categories is uncountable, since foods are different from a place to a place. If we have a Japanese food dataset, it does not help build a French food recognition system directly. That is why food data sets for different food cultures have been built independently so far. Then, in this paper, we propose to leverage existing knowledge on food of other cultures by a generic “foodness” classifier and domain adaptation. This can enable us not only to built other-cultured food datasets based on an original food image dataset automatically, but also to save as much crowd-sourcing costs as possible. In the experiments, we show the effectiveness of the proposed method over the baselines.
Chapter PDF
Similar content being viewed by others
References
Yang, S., Chen, M., Pomerleau, D., Sukthankar, R.: Food recognition using statistics of pairwise local features. In: CVPR (2010)
Chen, M., Yang, Y., Ho, C., Wang, S., Liu, S., Chang, E., Yeh, C., Ouhyoung, M.: Automatic chinese food identification and quantity estimation. In: SIGGRAPH Asia 2012 Technical Briefs (2012)
Bosch, M., Zhu, F., Khanna, N., Boushey, C.J., Delp, E.J.: Combining global and local features for food identification in dietary assessment. In: ICIP (2011)
Matsuda, Y., Yanai, K.: Multiple-food recognition considering co-occurrence employing manifold ranking. In: ICPR (2012)
Kawano, Y., Yanai, K.: Real-time mobile food recognition system. In: Proc. of IEEE CVPR International Workshop on Mobile Vision (IWMV) (2013)
Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. IEEE Trans. on PAMI 34(3), 480–492 (2012)
Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR, pp. 3360–3367 (2010)
Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector coding of local image descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 141–154. Springer, Heidelberg (2010)
Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive svms. In: ACM MM (2007)
Jing, Y., Baluja, S.: Visualrank: Applying pagerank to large-scale image search. IEEE Trans. on PAMI (2008)
Chen, M., Dhingra, K., Wu, W., Yang, L., Sukthankar, R., Yang, J.: PFID: Pittsburgh fast-food image dataset. In: ICIP, pp. 289–292 (2009)
Kawano, Y., Yanai, K.: Rapid mobile food recognition using fisher vector. In: ACPR (2013)
Yanai, K., Barnard, K.: Probabilistic web image gathering. In: ACM SIGMM WS Multimedia Information Retrieval, pp. 57–64 (2005)
Schroff, F., Criminisi, A., Zisserman, A.: Harvesting image databases from the web. In: ICCV (2007)
Vijayanarasimhan, S., Grauman, K.: Large-scale live active learning: training object detectors with crawled data and crowds. In: CVPR, pp. 1449–1456 (2011)
Patterson, G., Hays, J.: Sun attribute database: discovering, annotating, and recognizing scene attributes. In: CVPR, pp. 2751–2758 (2012)
Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P., Belongie, S.: Visual recognition with humans in the loop. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision - ECCV 2010, vol. 6314, pp. 438–451. Springer, Heidelberg (2010)
Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-ucsd birds 200. Technical report, California Institute of Technology (2010)
Maji, S., Kannala, J., Rahtu, E., Blaschko, M., Vedaldi, A.: Fine-grained visual classification of aircraft. Technical report, arXiv (2013)
: Oxford flower 102. http://www.robots.ox.ac.uk/~vgg/data/flowers/
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: CVPR (2007)
Bergamo, A., Torresani, L.: Meta-class features for large-scale object categorization on a budget. In: CVPR (2012)
Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-scale image retrieval with compressed fisher vectors. In: CVPR (2010)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR. vol. 2, pp. 2169–2178. IEEE (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kawano, Y., Yanai, K. (2015). Automatic Expansion of a Food Image Dataset Leveraging Existing Categories with Domain Adaptation. In: Agapito, L., Bronstein, M., Rother, C. (eds) Computer Vision - ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science(), vol 8927. Springer, Cham. https://doi.org/10.1007/978-3-319-16199-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-16199-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16198-3
Online ISBN: 978-3-319-16199-0
eBook Packages: Computer ScienceComputer Science (R0)