Abstract
We propose simple and efficient methods for estimating the camera motion between two images when this motion is small. While current solutions are still either slow, or unstable in case of small translation, we show how to considerably speed up a recent stable but slow method. The reasons for this speed-up are twofold. First, by approximating the rotation matrix to first order, we obtain a smaller polynomial system to be solved. Second, because of the small rotation assumption, we can use linearization and truncation of higher-order terms to quickly obtain a single solution. Our experiments show that our approach is both stable and fast on challenging test sequences from vehicle-mounted cameras.
Chapter PDF
Similar content being viewed by others
References
Cayley, A.: About the algebraic structure of the orthogonal group and the other classical groups in a field of characteristic zero or a prime characteristic, vol. 32. Reine Angewandte Mathematik (1846)
Cox, D.A., Little, J., O’Shea, D.: Ideals. Springer, Varieties and Algorithms (2006)
Demazure, M.: Sur deux problèmes de reconstruction. Tech. Rep. 882. INRIA, Rocquencourt, France (1988)
Faugeras, O.D., Maybank, S.: Motion from Point Matches: Multiplicity of Solutions. International Journal of Computer Vision 4(3), 225–246 (1990)
Fischler, M., Bolles, R.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6) (1981)
Fraundorfer, F., Scaramuzza, D.: Visual odometry: Part ii - matching, robustness, and applications. IEEE Robotics and Automation Magazine 19(2) (2012)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets Robotics: The KITTI Dataset. International Journal of Robotics Research (2013)
Geiger, A., Ziegler, J., Stiller, C.: StereoScan: Dense 3d reconstruction in real-time. In: IEEE Intelligent Vehicles Symposium (IV) (2011)
Kalantari, M., Jung, F., Guedon, J.P., Paparoditis, N.: The Five Points Pose Problem: A New and Accurate Solution Adapted to any Geometric Configuration. Advances in Image and Video Technology, pp. 215–226 (2009)
Kipnis, A., Shamir, A.: Advances in Cryptology, chap. Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization, pp. 19–30. Springer, Berlin/Heidelberg (1999)
Kneip, L., Furgale, P.: OpenGV: A unified and generalized approach to real-time calibrated geometric vision. In: Proceedings of the IEEE International Conference on Robotics and Automation (2014)
Kneip, L., Lynen, S.: Direct optimization of frame-to-frame rotation. In: Proceedings of the IEEE International Conference on Computer Vision, December 2013
Kneip, L., Siegwart, R., Pollefeys, M.: Finding the exact rotation between two images independently of the translation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577. Springer, Heidelberg (2012)
Kruppa, E.: Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. Sitzungsberichte der Mathematisch Naturwissenschaftlichen Kaiserlichen Akademie der Wissenschaften 122, 1939–1948 (1913)
Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial Eigenvalue Solutions to Minimal Problems in Computer Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence (2012)
Li, H.: A Simple Solution to the Six-Point Two-View Focal Length Problem. In: Proceedings of the European Conference on Computer Vision, pp. 200–213 (2006)
Li, H., Hartley, R.: Five-point motion estimation made easy. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 630–633 (2006)
Lim, J., Barnes, N., Li, H.: Estimating Relative Camera Motion from the Antipodal-Epipolar Constraint. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(10), 1907–1914 (2010)
Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133–135, 9 September 1981
Maybank, S.: Theory of Reconstruction from Image Motion. Springer, New York (1992)
Nistér, D.: Preemptive RANSAC for Live Structure and Motion Estimation. Machine Vision and Applications 16(5), 321–329 (2005)
Nistér, D.: An efficient solution to the five-point relative pose problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)
Philip, J.: A Non-Iterative Algorithm for Determining All Essential Matrices Corresponding to Five Point Pairs. The Photogrammetric Record 15(88), 589–599 (1996)
Stewénius, H., Engels, C., Nistér, D.: Recent Developments on Direct Relative Orientation. ISPRS Journal of Photogrammetry and Remote Sensing 60, 284–294 (Jun 2006)
Stewenius, H., Engels, C., Nistér, D.: An efficient minimal solution for infinitesimal camera motion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Supplementary material (MPEG 42,514 KB)
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ventura, J., Arth, C., Lepetit, V. (2015). Approximated Relative Pose Solvers for Efficient Camera Motion Estimation. In: Agapito, L., Bronstein, M., Rother, C. (eds) Computer Vision - ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science(), vol 8925. Springer, Cham. https://doi.org/10.1007/978-3-319-16178-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-16178-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16177-8
Online ISBN: 978-3-319-16178-5
eBook Packages: Computer ScienceComputer Science (R0)