Nothing Special   »   [go: up one dir, main page]

Skip to main content

Identification and Classification of Objects and Motions in Microscopy Images of Biological Samples Using Heuristic Algorithms

  • Chapter
  • First Online:
Computational Intelligence and Efficiency in Engineering Systems

Abstract

Heuristic algorithms are used for solving numerous modern research questions in biomedical informatics. We here summarize ongoing research done in this context and focus on approaches used in the analysis of microscopic images of biological samples. On the one hand we discuss the use of evolutionary algorithms for detecting and classifying structures in microscopy images, especially micro-patterns, cornea cells, and strands of myocardial muscles. On the other hand we show the use of data mining for characterizing the motions of molecules (for recognizing cells affected by paroxysmal nocturnal hemoglobinuria) and the progress of bone development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://bioinformatics.fh-hagenberg.at/.

  2. 2.

    http://heal.heuristiclab.com/.

  3. 3.

    The correct cell shape classifications were in these tests defined by a tissue bank technician.

References

  1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming—Modern Concepts and Practical Applications. Chapman & Hall/CRC (2009)

    Google Scholar 

  2. Bernardo, B.C., Weeks, K.L., Pretorius, L., McMullen, J.R.: Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol. Ther. 128(1), 191–227 (2010)

    Article  Google Scholar 

  3. Binnig, G., Quate, C.F.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  Google Scholar 

  4. Borgmann, D., Weghuber, J., Schaller, S., Jacak, J., Winkler, S.M.: Identification of patterns in microscopy images of biological samples using evolution strategies. In: Proceedings of the 24th European Modeling and Simulation Symposium EMSS 2012, pp. 271–276 (2012)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Dichtl, M., Gabriel, C., Hennerbichler, S., Seitz, B., Priglinger, S.: EU conformable eyebanking—a survey: Eyebank linz. Spektrum der Augenheilkunde 24, 166–173 (2010)

    Article  Google Scholar 

  7. Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice-Hall, Upper Saddle River NJ (1999)

    MATH  Google Scholar 

  8. Kampik, A., Grehn, F.: Augenärztliche Therapie. Georg Thieme Verlag, Stuttgart (2002)

    Google Scholar 

  9. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  10. Lanzerstorfer, P., Borgmann, D., Schütz, G., Winkler, S. M., Höglinger, O., Weghuber, J.: Quantification and kinetic analysis of Grb2-EGFR interaction on micro-patterned surfaces for the characterization of EGFR-modulating substances. PLoS One 9(3) (2014)

    Google Scholar 

  11. Lin, W., Dong, L.: Adaptive downsampling to improve image compression at low bit rates. IEEE Trans. Image Process. 15, 2513–2521 (2006)

    Article  Google Scholar 

  12. Lindenmair, A., Wolbank, S., Stadler, G., Meinl, A., Peterbauer-Scherb, A., Eibl, J., Polin, H., Gabriel, C., van Griensven, M., Redl, H.: Osteogenic differentiation of intact human amniotic membrane. Biomaterials 31(33), 8659–8665 (2010)

    Article  Google Scholar 

  13. Muresan, L., Jacak, J., Klement, E., Hesse, J., Schütz, G.J.: Microarray analysis at single molecule resolution. IEEE Trans. Nanotechnol. 9, 51–58 (2010)

    Google Scholar 

  14. Obritzberger, L., Schaller, S., Dorfer, V., Loimayr, C., Hennerbichler, S., Winkler, S.: Identification of endothelial cell morphology in cornea using evolution strategies. In: Proceedings of the European Modeling & Simulation Symposium (2014)

    Google Scholar 

  15. Olivo-Marin, J.C.: Extraction of spots in biological images using multiscale products. Pattern Recognit. 35, 1989–1996 (2002)

    Article  MATH  Google Scholar 

  16. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu.com, (2008)

    Google Scholar 

  17. Rechenberg, I.: Evolutionsstrategie. Friedrich Frommann Verlag (1973)

    Google Scholar 

  18. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42, 59–66 (1988)

    Article  Google Scholar 

  19. Rosse, W.F.: Paroxysmal nocturnal hemoglobinuria. Curr. Top. Microbiol. Immunol. 178, 163–173 (1992)

    Google Scholar 

  20. Schaller, S., Jacak, J., Gschwandtner, D., Bettelheim, P., Winkler, S.M.: Identification of PNH affected cells by classifying motion characteristics of single molecules. Proceedings of the International Workshop on Innovative Simulation for Health Care IWISH 2013, pp. 52–57 (2013)

    Google Scholar 

  21. Schwarzenbacher, M., Kaltenbrunner, M., Hesch, M.B.C., Paster, W., Weghuber, J., Heise, B., Sonnleitner, A., Stockinger, H., Schütz, G.: Micropatterning for quantitative analyses of protein-protein interactions in living cells. Nat. Methods 5, 1053–1060 (2008)

    Article  Google Scholar 

  22. Schwefel, H.-P.: Numerische Optimierung von Computer-Modellen mittels der Evolutions strategie. Birkhäuser, Basel, Switzerland (1994)

    Google Scholar 

  23. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  24. Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S. M., Dorfer, V., Affenzeller, M.: Advanced Methods and Applications in Computational Intelligence. Chapter Architecture and Design of the HeuristicLab Optimization Environment. Topics in Intelligent Engineering and Informatics. pp. 197–261. Springer (2014)

    Google Scholar 

  25. Weghuber, J., Brameshuber, M., Sunzenauer, S., Lehner, M., Paar, C., Haselgrübler, T., Schwarzenbacher, M., Kaltenbrunner, M., Hesch, C., Paster, W., Heise, B., Sonnleitner, A., Stockinger, H., Schütz, G.J.: Methods Enzymol. 472, 133–151 (2010)

    Article  Google Scholar 

  26. Wieser, S., Schütz, G.J.: Tracking single molecules in the live cell plasma membrane—do’s and don’t’s. Methods 46, 131–140 (2008)

    Article  Google Scholar 

  27. Winkler,S. M.: Evolutionary System Identification: Modern Concepts and Practical Applications. Schriften der Johannes Kepler Universitt Linz. Universittsverlag Rudolf Trauner (2009)

    Google Scholar 

  28. Winkler, S. M. Schaller, S., Borgmann, D., Obritzberger, L., Dorfer, V., Affenzeller, M., Jacak, J., Weghuber, J.: Identification and classification of objects and motions in microscopy images of biological samples using heuristic algorithms. In: Proceedings of the 2nd Asia-Pacific Conference on Computer-Aided System Engineering, APCASE 2014, South Kuta, Indonesia, 10th–12th February, pp. 89–90 (2014). ISBN 978-0-9924518-0-6

    Google Scholar 

  29. Wolbank, S., Hildner, F., Redl, H., van Griensven, M., Gabriel, C., Hennerbichler, S.: Impact of human amniotic membrane preparation on release of angiogenic factors. J. Tissue Eng. Regen. Med. 3(8), 651–654 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors cordially thank their research partners at Red Cross Blood Transfusion Service of Upper Austria, Olympus Austria, Trauma Care Consult, and at the Research Centers Hagenberg, Wels, and Linz of the University of Applied Sciences Upper Austria for their ongoing support. The work described in this paper was done within the research projects MicroProt (sponsored by the University of Applied Sciences Upper Austria within its basic research programme) and NanoDetect (sponsored by the Austrian Research Promotion Agency within the FIT-IT programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan M. Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Winkler, S.M. et al. (2015). Identification and Classification of Objects and Motions in Microscopy Images of Biological Samples Using Heuristic Algorithms. In: Borowik, G., Chaczko, Z., Jacak, W., Łuba, T. (eds) Computational Intelligence and Efficiency in Engineering Systems. Studies in Computational Intelligence, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-319-15720-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15720-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15719-1

  • Online ISBN: 978-3-319-15720-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics