Abstract
Heuristic algorithms are used for solving numerous modern research questions in biomedical informatics. We here summarize ongoing research done in this context and focus on approaches used in the analysis of microscopic images of biological samples. On the one hand we discuss the use of evolutionary algorithms for detecting and classifying structures in microscopy images, especially micro-patterns, cornea cells, and strands of myocardial muscles. On the other hand we show the use of data mining for characterizing the motions of molecules (for recognizing cells affected by paroxysmal nocturnal hemoglobinuria) and the progress of bone development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
The correct cell shape classifications were in these tests defined by a tissue bank technician.
References
Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming—Modern Concepts and Practical Applications. Chapman & Hall/CRC (2009)
Bernardo, B.C., Weeks, K.L., Pretorius, L., McMullen, J.R.: Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol. Ther. 128(1), 191–227 (2010)
Binnig, G., Quate, C.F.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)
Borgmann, D., Weghuber, J., Schaller, S., Jacak, J., Winkler, S.M.: Identification of patterns in microscopy images of biological samples using evolution strategies. In: Proceedings of the 24th European Modeling and Simulation Symposium EMSS 2012, pp. 271–276 (2012)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Dichtl, M., Gabriel, C., Hennerbichler, S., Seitz, B., Priglinger, S.: EU conformable eyebanking—a survey: Eyebank linz. Spektrum der Augenheilkunde 24, 166–173 (2010)
Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice-Hall, Upper Saddle River NJ (1999)
Kampik, A., Grehn, F.: Augenärztliche Therapie. Georg Thieme Verlag, Stuttgart (2002)
Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Berlin (2002)
Lanzerstorfer, P., Borgmann, D., Schütz, G., Winkler, S. M., Höglinger, O., Weghuber, J.: Quantification and kinetic analysis of Grb2-EGFR interaction on micro-patterned surfaces for the characterization of EGFR-modulating substances. PLoS One 9(3) (2014)
Lin, W., Dong, L.: Adaptive downsampling to improve image compression at low bit rates. IEEE Trans. Image Process. 15, 2513–2521 (2006)
Lindenmair, A., Wolbank, S., Stadler, G., Meinl, A., Peterbauer-Scherb, A., Eibl, J., Polin, H., Gabriel, C., van Griensven, M., Redl, H.: Osteogenic differentiation of intact human amniotic membrane. Biomaterials 31(33), 8659–8665 (2010)
Muresan, L., Jacak, J., Klement, E., Hesse, J., Schütz, G.J.: Microarray analysis at single molecule resolution. IEEE Trans. Nanotechnol. 9, 51–58 (2010)
Obritzberger, L., Schaller, S., Dorfer, V., Loimayr, C., Hennerbichler, S., Winkler, S.: Identification of endothelial cell morphology in cornea using evolution strategies. In: Proceedings of the European Modeling & Simulation Symposium (2014)
Olivo-Marin, J.C.: Extraction of spots in biological images using multiscale products. Pattern Recognit. 35, 1989–1996 (2002)
Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu.com, (2008)
Rechenberg, I.: Evolutionsstrategie. Friedrich Frommann Verlag (1973)
Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42, 59–66 (1988)
Rosse, W.F.: Paroxysmal nocturnal hemoglobinuria. Curr. Top. Microbiol. Immunol. 178, 163–173 (1992)
Schaller, S., Jacak, J., Gschwandtner, D., Bettelheim, P., Winkler, S.M.: Identification of PNH affected cells by classifying motion characteristics of single molecules. Proceedings of the International Workshop on Innovative Simulation for Health Care IWISH 2013, pp. 52–57 (2013)
Schwarzenbacher, M., Kaltenbrunner, M., Hesch, M.B.C., Paster, W., Weghuber, J., Heise, B., Sonnleitner, A., Stockinger, H., Schütz, G.: Micropatterning for quantitative analyses of protein-protein interactions in living cells. Nat. Methods 5, 1053–1060 (2008)
Schwefel, H.-P.: Numerische Optimierung von Computer-Modellen mittels der Evolutions strategie. Birkhäuser, Basel, Switzerland (1994)
Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S. M., Dorfer, V., Affenzeller, M.: Advanced Methods and Applications in Computational Intelligence. Chapter Architecture and Design of the HeuristicLab Optimization Environment. Topics in Intelligent Engineering and Informatics. pp. 197–261. Springer (2014)
Weghuber, J., Brameshuber, M., Sunzenauer, S., Lehner, M., Paar, C., Haselgrübler, T., Schwarzenbacher, M., Kaltenbrunner, M., Hesch, C., Paster, W., Heise, B., Sonnleitner, A., Stockinger, H., Schütz, G.J.: Methods Enzymol. 472, 133–151 (2010)
Wieser, S., Schütz, G.J.: Tracking single molecules in the live cell plasma membrane—do’s and don’t’s. Methods 46, 131–140 (2008)
Winkler,S. M.: Evolutionary System Identification: Modern Concepts and Practical Applications. Schriften der Johannes Kepler Universitt Linz. Universittsverlag Rudolf Trauner (2009)
Winkler, S. M. Schaller, S., Borgmann, D., Obritzberger, L., Dorfer, V., Affenzeller, M., Jacak, J., Weghuber, J.: Identification and classification of objects and motions in microscopy images of biological samples using heuristic algorithms. In: Proceedings of the 2nd Asia-Pacific Conference on Computer-Aided System Engineering, APCASE 2014, South Kuta, Indonesia, 10th–12th February, pp. 89–90 (2014). ISBN 978-0-9924518-0-6
Wolbank, S., Hildner, F., Redl, H., van Griensven, M., Gabriel, C., Hennerbichler, S.: Impact of human amniotic membrane preparation on release of angiogenic factors. J. Tissue Eng. Regen. Med. 3(8), 651–654 (2009)
Acknowledgments
The authors cordially thank their research partners at Red Cross Blood Transfusion Service of Upper Austria, Olympus Austria, Trauma Care Consult, and at the Research Centers Hagenberg, Wels, and Linz of the University of Applied Sciences Upper Austria for their ongoing support. The work described in this paper was done within the research projects MicroProt (sponsored by the University of Applied Sciences Upper Austria within its basic research programme) and NanoDetect (sponsored by the Austrian Research Promotion Agency within the FIT-IT programme).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Winkler, S.M. et al. (2015). Identification and Classification of Objects and Motions in Microscopy Images of Biological Samples Using Heuristic Algorithms. In: Borowik, G., Chaczko, Z., Jacak, W., Łuba, T. (eds) Computational Intelligence and Efficiency in Engineering Systems. Studies in Computational Intelligence, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-319-15720-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-15720-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15719-1
Online ISBN: 978-3-319-15720-7
eBook Packages: EngineeringEngineering (R0)