Nothing Special   »   [go: up one dir, main page]

Skip to main content

Compact Encodings and Indexes for the Nearest Larger Neighbor Problem

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8973))

Included in the following conference series:

Abstract

Given a d-dimensional array, for any integer d > 0, the nearest larger value (NLV) query returns the position of the element which is closest, in L1 distance, to the query position, and is larger than the element at the query position. We consider the problem of preprocessing a given array, to construct a data structure that can answer NLV queries efficiently. In the 2-D case, given an n ×n array A, we give an asymptotically optimal O(n2)-bit encoding that answers NLV queries in O(1) time. When A is a binary array, we describe a simpler O(n2)-bit encoding that also supports NLV queries in O(1) time. Using this, we obtain an index of size O(n2/c) bits that supports NLV queries in O(c) time, for any parameter c, where 1 ≤ c ≤ n, matching the lower bound. For the 1-D case we consider the nearest larger right value (NLRV) problem where the nearest larger value to the right is sought. For an array of length n, we obtain an index that takes O((n/c) logc) bits, and supports NLRV queries in O(c) time, for any any parameter c, where 1 ≤ c ≤ n, improving the earlier results of Fischer et al. and Jayapaul et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asano, T., Bereg, S., Kirkpatrick, D.: Finding nearest larger neighbors. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 249–260. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Asano, T., Kirkpatrick, D.: Time-space tradeoffs for all-nearest-larger-neighbors problems. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 61–72. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algorithms based on finding all nearest smaller values. J. Algorithms 14(3), 344–370 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brodal, G.S., Brodnik, A., Davoodi, P.: The encoding complexity of two dimensional range minimum data structures. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 229–240. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Srinivasa Rao, S.: Two dimensional range minimum queries and fibonacci lattices. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 217–228. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range minimum queries. Algorithmica 68(3), 610–625 (2014)

    Article  MathSciNet  Google Scholar 

  8. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations of sequences and full-text indexes. ACM Transactions on Algorithms 3(2) (2007)

    Google Scholar 

  9. Fischer, J.: Combined data structure for previous- and next-smaller-values. Theor. Comput. Sci. 412(22), 2451–2456 (2011)

    Article  MATH  Google Scholar 

  10. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)

    Article  MATH  Google Scholar 

  11. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554. IEEE Computer Society (1989)

    Google Scholar 

  12. Jayapaul, V., Jo, S., Raman, V., Satti, S.R.: Space efficient data structures for nearest larger neighbor. In: Proc. IWOCA 2014 (to appear, 2014)

    Google Scholar 

  13. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary. In: ALENEX (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jo, S., Raman, R., Rao Satti, S. (2015). Compact Encodings and Indexes for the Nearest Larger Neighbor Problem. In: Rahman, M.S., Tomita, E. (eds) WALCOM: Algorithms and Computation. WALCOM 2015. Lecture Notes in Computer Science, vol 8973. Springer, Cham. https://doi.org/10.1007/978-3-319-15612-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15612-5_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15611-8

  • Online ISBN: 978-3-319-15612-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics